首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The K + O2 collision has been studied at low energy by three-dimensional trajectory surface-hopping calculations. The diabatic potential energy surfaces used to describe the electronic states involved in the collision have been built using an analytical semi-empirical model and have not been fitted to experimental results. The double-peak structure experimentally observed in the energy-loss spectrum for K+ production is confirmed; but it appears that the high-energy-loss peak is due to efficient T-V energy transfer and not to electronic excitation of the O2? molecular ion. The energy transfer mechanism is explained by a comparison between the vibrational period of the target and the collision time which depends upon the collision energy.  相似文献   

2.
Collision-induced dissociation from the ground vibration-rotation state of the reactant diatom is studied in the systems He + H2, H + H2, and He + H+2 by quasiclassical trajectory calculations, using ab initio potential energy surfaces. The dependence of the dynamical threshold values on the shape of the potential energy surface is discussed.  相似文献   

3.
Use of the London-Eyring-Polanyi + 3-Center + power-series (LEP -3C -PS ) analytical potential as a fit to potential energy surfaces (PES ) which are known numerically only are suggested. This analytical fit was performed for the diatomics-in-molecules + 3 Center (DIM -3C ) PES of HCl2 and HI2 systems. The HCl2 analytical LEP -3C-PS potential was used for classical trajectory calculations of the Cl' + HCl → HCl' + Cl reaction. The rate constant obtained from these calculations for T = 358° K is 1.95 X 109 cm3/mol sec which is close to the experimental value of 2.5 109 cm3/mol sec.  相似文献   

4.
All-channel time-dependent quantum mechanical reaction probabilities are reported for the collinear He + H+2(ν = 0, 1, 2) → HeH+ + H reaction at a total energy of 1.2 eV on previously reported diatomics-in-molecule (DIM) and spline fitted ab initio (SAI) surfaces. These results are in agreement with the previous quasiclassical trajectory results in that there is vibrational enhancement of the reaction probability on the SAI surface but not on the DIM surface. This agreement lends support to our previously drawn conclusion that small differences in the potential-energy surface can lead to substantially different dynamic results.  相似文献   

5.
《Chemical physics letters》1987,142(5):349-353
Complete active space MC SCF (CAS SCF) calculations followed by second-order configuration interaction (SOCI) calculations are carried out on the potential energy surfaces (bending surface, linear surfaces) of the 2Σg+ ground state of He3+. The potential minimum for the 2Σg+ state occurs at a linear geometry with HeHe bond length of 1.248 Å. The binding energy of He3+ with respect to He + He+ + He was calculated to be 2.47 eV at the SOCI level. The energy required to dissociate He3+ (2Σg+) into He2+ (2Σu+) and He(1S) is calculated to be 0.14 eV. The same level of SOCI calculations of He2+ yield a De value of 2.36 eV.  相似文献   

6.
《Chemical physics》1986,101(2):291-298
The formation processes of N+2 (X 2Σ+g) resulting from the He(2 3S) + N2 Penning ionization and the thermal energy He+, He+2 + N2 charge transfer reaction are studied by observing the N+2 (B 2Σ+u ← X 2Σ+g) laser-induced fluorescence (LIF) in a flowing afterglow. In both reactions, the vibrational population) decrease monotonically with increasing vibrational quantum number from υ″ = 0 to 3, and a population inversion with a peak at υ″ = 4 is seen. In the He(2 3S) + N2 Penning ionization, the vibrational populations of N+2 (X, υ″ = 0–2) are explained by a direct channel and the B —X radiative cascade, while those of N+2 (X, υ″ = 4–6) are ascribed to the collision-induced electronic energy transfer between the A 2Πu and X 2Σ+g states. In the He+, He+2 + N2 reaction, the N+2 (X, υ″ = 0–3) is interpreted as the B−X radiative cascade and the collisional quenching of the unidentified states produced from the He+ + N2 reaction, while the collision-induced electronic energy transfer from the N+2 (A) state produced through the He+2 + N2 reaction is probably important for the formation of N+2 (X, υ″ = 4–6).  相似文献   

7.
《Chemical physics》1986,101(2):227-241
State-to-state cross sections have been calculated for collisions of N+2 (X, υ) or N+2 (A, υ) with Ar at relative energies of 8 and 20 eV. The computations utilize potential energy surfaces computed recently by Archirel and Levy. In the calculations the translational motion is treated classically, and the time-dependent Schrödinger equation is solved exactly for the vibronic states of the system. In addition to the charge transfer and vibrational excitation and deexcitation processes, cross sections are also obtained for internal conversion between N+2 (A) + Ar and N+2 (X) + Ar. The results are in good agreement with the available experimental data at these energies.  相似文献   

8.
A semiclassical treatment of electronic transitions in the collinear rearrangement H+ + D2 (ν = 0) → HD+ (ν = 0,1) + D is presented. The treatment represents an extension of Stueckelberg's method for a single nuclear degree of freedom to collisions involving several nuclear degrees of freedom. The classical limit of scattering amplitudes (S-matrix elements) is calculated for the transition between the two adiabatic potential energy surfaces corresponding to the two lowest singlet states of HD+2. S-matrix elements are constructed from trajectories propagating in complex time and complex phase space, which make localized transitions between the two surfaces by crossing their complex line of intersection. The action along each trajectory acquires an imaginary part, which contributes exponential damping to the corresponding amplitude for electronic transition.  相似文献   

9.
An ab initio analysis on the involved potential energy surfaces is presented for the investigation of the charge transfer mechanism for the He++N2 system. At high collision energy, as many as seven low-lying electronic states are observed to be involved in the charge transfer mechanism. Potential energy surfaces for these low-lying electronic states have been computed in the Jacobi scattering coordinates, applying multireference configuration interaction level of theory and aug-cc-pVQZ basis sets. Asymptotes for the ground and various excited states are assigned to mark the entrance (He++N2) and charge transfer channels (He+N2+). Nonadiabatic coupling matrix elements and quasi-diabatic potential energy surfaces have been computed for all seven states to rationalize the available experimental data on the charge transfer processes and to facilitate dynamics studies.  相似文献   

10.
Gas‐phase photoelectron spectroscopy (PES) was conducted on [XAg24(SPhMe2)18]? (X=Ag, Au) and [YAg24(SPhMe2)18]2? (Y=Pd, Pt), which have a formal superatomic core (X@Ag12)5+ or (Y@Ag12)4+ with icosahedral symmetry. PES results show that superatomic orbitals in the (Au@Ag12)5+ core remain unshifted with respect to those in the (Ag@Ag12)5+ core, whereas the orbitals in the (Y@Ag12)4+ (Y = Pd, Pt) core shift up in energy by about 1.4 eV. The remarkable doping effect of a single Y atom (Y=Pd, Pt) on the electronic structure of the chemically modified (Ag@Ag12)5+ superatom was reproduced by theoretical calculations on simplified model systems and was ascribed to 1) the weaker binding of valence electrons in Y@(Ag+)12 compared to Ag+@(Ag+)12 due to the reduction in formal charge of the core potential, and 2) the upward shift of the apparent vacuum level due to the presence of a repulsive Coulomb barrier between [YAg24(SPhMe2)18]? and electron.  相似文献   

11.
We have studied the characteristics of archetypal model systems for bimolecular nucleophilic substitution at phosphorus (SN2@P) and, for comparison, at carbon (SN2@C) and silicon (SN2@Si) centers. In our studies, we applied the generalized gradient approximation (GGA) of density functional theory (DFT) at the OLYP/TZ2P level. Our model systems cover nucleophilic substitution at carbon in X?+CH3Y (SN2@C), at silicon in X?+SiH3Y (SN2@Si), at tricoordinate phosphorus in X?+PH2Y (SN2@P3), and at tetracoordinate phosphorus in X?+POH2Y (SN2@P4). The main feature of going from SN2@C to SN2@P is the loss of the characteristic double‐well potential energy surface (PES) involving a transition state [X? CH3? Y]? and the occurrence of a single‐well PES with a stable transition complex, namely, [X? PH2? Y]? or [X? POH2? Y]?. The differences between SN2@P3 and SN2@P4 are relatively small. We explored both the symmetric and asymmetric (i.e. X, Y=Cl, OH) SN2 reactions in our model systems, the competition between backside and frontside pathways, and the dependence of the reactions on the conformation of the reactants. Furthermore, we studied the effect, on the symmetric and asymmetric SN2@P3 and SN2@P4 reactions, of replacing hydrogen substituents at the phosphorus centers by chlorine and fluorine in the model systems X?+PR2Y and X?+POR2Y, with R=Cl, F. An interesting phenomenon is the occurrence of a triple‐well PES not only in the symmetric, but also in the asymmetric SN2@P4 reactions of X?+POCl2? Y.  相似文献   

12.
Potential energy surfaces and the autoionization width for the Penning ionization transition He(2 3S) + H2 → He + H+2 + e? have been calculated using the DIM method. The surfaces compare favourably with the existing ab initio calculations, and the approximation to the autoioinization width appear to be reasonable.  相似文献   

13.
Gas‐phase anionic reactions X? + CH3SY (X, Y = F, Cl, Br, I) have been investigated at the level of B3LYP/6‐311+G (2df,p). Results show that the potential energy surface (PES) of gas‐phase reactions X? + CH3SY (X, Y = Cl, Br, I) has a quadruple‐well structure, indicating an addition–elimination (A–E) pathway. The fluorine behaves differently in many respects from the other halogens and the reactions F? + CH3SY (Y = F, Cl, Br, I) correspond to deprotonation instead of substitution. The gas‐phase reactions X? + CH3SF (X = Cl, Br, I), however, follow an A–E pathway other than the last two out going steps (COM2 and PR) that proceeds via a deprotonation. The polarizable continuum model (PCM) has been used to evaluate the solvent effects on the energetics of the reactions X? + CH3SY (X, Y = Cl, Br, I). The PES is predicted to be unimodal in the solvents of high polarity. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

14.
《Tetrahedron》1986,42(22):6225-6234
Ab initio molecular orbital calculations on the distonic radical cations CH2(CH2)nN+H3 and their conventional isomers CH3(CH2)nNH2+ (n = 0,1, 2 and 3) indicate a preference in each case for the distonic isomer. The energy difference appears to converge with increasing n towards a limit which is close to the energy difference between the component systems CH3·H2+CH3+NH3 (representing the distonic isomer) and CH3CH3+CH3NH2+ (representing the conventional isomer). The generality of this result is assessed by using results for the component systems CH3·Y+CH3X+H and CH3YH+CH3X+. (or CH3YH+. + CH3X) to predict the relative energies of the distonic ions ·Y(CH2)nX+H and their conventional isomers HY(CH2)nX+. (X = NH2, OH, F, PH2, SH, Cl; Y = CH2, NH, O) and testing the predictions through explicit calculations for systems with n = 0,1 and 2. Although the predictions based on component systems are often close to the results of direct calculations, there are substantial discrepancies in a number of cases; the reasons for such discrepancies are discussed. Caution must be exercised in applying this and related predictive schemes. For the systems examined in the present study, the conventional radical cation is predicted in most cases to lie lower in energy than its distonic isomer. It is found that the more important factors contributing to a preference for distonic over conventional radical cations are the presence in the system of a group(X) with high proton affinity and the absence of a group (X, Y or perturbed (C—C) with low ionization energy.  相似文献   

15.
LCAC-SW method has been extended to study the reaction dynamics for ion-pair formation processes.M+X2M++X-2 reaction system involves two potential energy surfaces,i.e.,the covalence state(M+X2) and the ionic state(M++X-2) and their crossing effect.The working equations for calculating state-to-state probability have been derived based on the above two-state model.The selected-state reaction probabilities of collinear ion-pair formation process M+I2M++I-2(M=Na,K,Cs) on Aten-Lanting-Los two-state potential energy surface have been calculated.The results show that the reaction probabilities are of resonance effect.  相似文献   

16.
Lifetimes of C-2 in rotational levels of the B?2Σ+u:ν′ = 0, ν′ = 1 states have been measured. C-2 was produced from bromoacetylene and rare-gas metastables and the B?2Σ+u—X?2Σ+g transition was laser excited. The lifetimes are constant within a vibrational level, 77 = 8 ns for ν′= 0 and 73 = 7 ns for ν′ = 1. The oscillator strength fνo = 0.044 ± 0.004.  相似文献   

17.
《Chemical physics letters》1986,132(2):200-204
A method for measuring the kinetic-energy spectrum of high-Rydberg fragments from collisions of keV molecular ions with rare-gas atoms is described. The kinetic-energy spectra of high-Rydberg fragments from the collisions between D2+, H2+, N2+ and C2+ ions having 8 keV kinetic energy and thermal He and Xe are reported. Two single-collision processes for the generation of high-Rydberg fragments have been identified.  相似文献   

18.
王宏贾建峰  武海顺 《中国化学》2006,24(11):1509-1513
Using quantum chemistry methods B3LYP/6-31++G(d,p) to optimize endohedral complexes X@(HBNH)12 (X=Li^0/+, Na^0/+, K^0/+, Be^0/2+, Mg^0/2+, Ca^0/2+, H and He), the geometries with the lowest energy were achieved. Inclusion energy, standard equilibrium constant, natural charge, spin density, ionization potentials, and HOMO-LUMO energy gap were also discussed. The calculation predicted that X=Na^0/+, K^0/+, Mg^0/2+, Ca^0/2+, H and He are nearly located at the center of (HBNH)12 cluster. Li^+ lies in less than 0.021 nm departure from the center. Li and Be^0/2+ dramatically deviate from the center. (HBNH)12 prefers to enclose Li^+, Be^2+, Mg^2+, and Ca^2+ in it than others. Moreover, M@(HBNH)12 (M=Li, Na, K) species are "superalkalis" in that they possess lower first ionization potentials than the Cs atom (3.9 eV).  相似文献   

19.
The density functional theory method with the PBE functional, SBK pseudopotential, and extended basis sets was used to study the reaction between methane and gold(III) homoleptic complexes, namely, [AuX4]? (X = Cl, Br, I, H, CN, NH2, OH, CH3, and SH), [Au(X(CY)2X)2]? (X = S, Y = H; X = Y = O), Au2Cl6, [Au(X2(CY))2]+ (X = S, Y = NH2; X = O, Y = H), and [Au(acac)2]+, with the formation of electrophic substitution products. The activation of methane under mild conditions was found to be uncharacteristic of anionic and neutral complexes. According to calculations of cationic oxygen-containing complexes, the formation of methane complexes is possible in their reactions with methane. The energy barrier to this reaction noticeably decreases because of the activation of the C-H bond in this complex. The heat effects vary widely depending on the nature of the ligand. There is, however, no obvious correlation between their values and the activation energy of the reaction.  相似文献   

20.
The formation of chelate complexes between free radicals and closed-shell metal ions is observed by ESR. spectroscopy. High resolution spectra of 1:1 complexes formed between the radical anion of glyoxal-bis-(N-t-butylimine) (GLIR) and Mg2+, Ca2+ and Zn2+ are completely analysed. The complexes formed in dimethoxyethane or tetrahydrofuran solutions are Ca(GLIR)+, Mg(GLIR)X, Zn (GLIR)X and Zn(GLIR)Y?2, where X = Cl?, Br?, I?, and Y = CN?, NCS?. The formation of the heterometallic, binuclear cyanide-bridged complex Zn(GLIR)Fe(CN)63? is also described. Isotropic coupling constants are given for protons and 14N in GLIR as well as for the metal nuclei and magnetic nuclei in the groups X and Y. Stabilities, structures and ESR. parameters of these radical complexes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号