首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A modified Kendrick Mass Defect (KMD) analysis was applied to the analysis of polycyclic aromatic hydrocarbons (PAHs) and fullerenes in the diffusion flame from a handheld butane torch.
Graphical Abstract ?
  相似文献   

2.
The analysis of many hydrogen exchange (HX) experiments depends on knowledge of exchange rates expected for the unstructured protein under the same conditions. We present here some minor adjustments to previously calibrated values and a stringent test of their accuracy.
Graphical Abstract ?
  相似文献   

3.
The development of tandem ion mobility spectroscopy (IMS) known as IMS-IMS has led to extensive research into isomerizations of isolated molecules. Many recent works have focused on the retinal chromophore which is the optical switch used in animal vision. Here, we study a shortened derivative of the chromophore, which exhibits a rich IM spectrum allowing for a detailed analysis of its isomerization pathways, and show that the longer the chromophore is, the lower the barrier energies for isomerization are.
Graphical Abstract
  相似文献   

4.
Current literature shows a gap for methods which can identify yeast sub-species (strains or serovars) in samples where there are no viable cells remaining. Presented here is a technique for the analysis of yeast supernatant, including solid phase extraction, data-dependent acquisition liquid chromatography/mass spectrometry (LC-MS), and two chemometric methods to identify and classify yeast strains. Five strains of Saccharomyces cerevisiae were successfully identified in various stages of growth. In addition, peptide/protein identification was performed, without the need for additional data acquisition.
Graphical Abstract ?
  相似文献   

5.
Proof of concept evidence is presented for a new method for the determination of isoaspartate, an important post-translational modification. Chemical derivatization is performed using common reagents for the modification of carboxylic acids and shown to yield suitable diagnostic information with regard to isomerization at the aspartate residue. The diagnostic gas phase chemistry is probed by collision-induced dissociation mass spectrometry, on the timescale of the MS experiment and semi-quantitative calibration of the percentage of isoaspartate in a peptide sample is demonstrated.
Graphical Abstract ?
  相似文献   

6.
We report distinctive spectroscopic fingerprints of the monosaccharide standards GalNAc4S and GalNAc6S by coupling mass spectrometry and ion spectroscopy in the 3-μm range. The disaccharide standards CSA and CSC are used to demonstrate the applicability of a novel approach for the analysis of sulfate position in GalNAc-containing glycosaminoglycans. This approach was then used for the analysis of a sample containing CSA and CSC disaccharides. Finally, we discuss the generalization of the coupling of mass spectrometry with ion spectroscopy for the structural analysis of glycosaminoglycans on a tetrasaccharide from dermatan sulfate source.
Graphical abstract ?
  相似文献   

7.
The structural study of glycans and glycoconjugates is essential to assign their roles in homeostasis, health, and disease. Once dominated by nuclear magnetic resonance spectroscopy, mass spectrometric methods have become the preferred toolbox for the determination of glycan structures at high sensitivity. The patterns of such structures in different cellular states now allow us to interpret the sugar codes in health and disease, based on structure-function relationships. Dr. Catherine E. Costello was the 2017 recipient of the American Society for Mass Spectrometry’s Distinguished Contribution Award. In this Perspective article, we describe her seminal work in a historical and geographical context and review the impact of her research accomplishments in the field.
8
? Graphical abstract
  相似文献   

8.
A new geometry for the flight region in a time-of-flight mass spectrometer is presented. It consists of two opposing electrostatic sectors of about 255° each and straight sections with a length appropriate to the turns. The resulting geometry folds into a compact space. The first-order aberrations for position, angle, and energy are all zero. The transverse focusing properties are also excellent. For an energetic, high-divergence ion source such as laser ablation, the sTOF has higher resolution and ion transmission than a reflectron of similar physical size.
Graphical Abstract ?
  相似文献   

9.
10.
Mass defect is associated with the binding energy of the nucleus. It is a fundamental property of the nucleus and the principle behind nuclear energy. Mass defect has also entered into the mass spectrometry terminology with the availability of high resolution mass spectrometry and has found application in mass spectral analysis. In this application, isobaric masses are differentiated and identified by their mass defect. What is the relationship between nuclear mass defect and mass defect used in mass spectral analysis, and are they the same?
Graphical Abstract ?
  相似文献   

11.
Coaxial electrospray has been used effectively for several dual-emitter applications, but has not been utilized for the study of rapid in-source chemistry. In this paper, we report the fabrication of a coaxial, micro-volume dual-emitter through the modification of a manufacturer’s standard electrospray probe. This modification creates rapid mixing inside the Taylor cone and the ability to manipulate fast reactions using a variety of solvents and analytes. We demonstrate its potential as a low-cost, dual-emitter assembly for diverse applications through three examples: relative ionization in a biphasic electrospray, hydrogen-deuterium exchange, and protein supercharging.
Graphical Abstract
  相似文献   

12.
A novel dual-channel enzymatic inhibition measurement (DEIM) method was developed to improve the repeatability with light/heavy isotope substrates, producing reliable relative standard deviations (< 3%) by employing acetylcholinesterase (AChE) as the model enzyme. The matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) was adapted for enzyme-inhibited method due to its good salt-tolerance and high throughput; meanwhile, dual-channel enzymatic reactions were performed to improve the repeatability of each well. The acetylcholinesterase inhibition measurement was conducted by mixing the quenched enzyme reaction solution of blank group (with heavy isotope as substrate) and experimental group (with light isotope as substrate), of which the inhibition rate might be affected by isotope effects. Hence, inverse study and Km measurement were implemented to validate the method. The inverse study shows similar inhibition rate (68.9 and 70.3%) and the Km of isotope substrates are analogous (0.139 and 0.135 mM), which demonstrated that the novel method is feasible to AChE inhibition measurement. Finally, the method was applied to herb extracts, half of which exhibit inhibition to AChE. The precise dual-channel enzymatic inhibition measurement (DEIM) method could be regarded as a promising approach to potential enzyme inhibitor screening.
Graphical Abstract ?
  相似文献   

13.
We report on the performance of a cryogenic 2D linear ion trap (cryoLIT) that is shown to be mass-selective in the temperature range of 17–295 K. As the cryoLIT is cooled, the ejection voltages during the mass instability scan decrease, which results in an effective mass shift to lower m/z relative to room temperature. This is attributed to a decrease in trap radius caused by thermal contraction. Additionally, the cryoLIT generates reproducible mass spectra from day-to-day, and is capable of performing stored waveform inverse Fourier transform (SWIFT) mass isolation of fragile N2-tagged ions for the purpose of background-free infrared dissociation spectroscopy.
Graphical Abstract ?
  相似文献   

14.
Analyzing mass spectrometry imaging data can be laborious and time consuming, and as the size and complexity of datasets grow, so does the need for robust automated processing methods. We here present a method for comprehensive, semi-targeted discovery of molecular distributions of interest from mass spectrometry imaging data, using widely available image similarity scoring algorithms to rank images by spatial correlation. A fast and powerful batch search method using a MATLAB implementation of structural similarity (SSIM) index scoring with a pre-selected reference distribution is demonstrated for two sample imaging datasets, a plant metabolite study using Artemisia annua leaf, and a drug distribution study using maraviroc-dosed macaque tissue.
Graphical Abstract ?
  相似文献   

15.
The origin and the magnitude of the charge in a macroion are critical questions in mass spectrometry analysis coupled to electrospray and other ionization techniques that transfer analytes from the bulk solution into the gaseous phase via droplets. In many circumstances, it is the later stages of the existence of a macroion in the containing solvent drop before the detection that determines the final charge state. Experimental characterization of small (with linear dimensions of several nanometers) and short-lived droplets is quite challenging. Molecular simulations in principle may provide insight exactly in this challenging for experiments regime. We discuss the strengths and weaknesses of the molecular modeling of electrosprayed droplets using molecular dynamics. We illustrate the limitations of the molecular modeling in the analysis of large macroions and specifically proteins away from their native states.
Graphical Abstract ?
  相似文献   

16.
High field asymmetric waveform ion mobility spectrometry (FAIMS), also known as differential ion mobility spectrometry, is emerging as a tool for biomolecular analysis. In this article, the benefits and limitations of FAIMS for protein analysis are discussed. The principles and mechanisms of FAIMS separation of ions are described, and the differences between FAIMS and conventional ion mobility spectrometry are detailed. Protein analysis is considered from both the top-down (intact proteins) and the bottom-up (proteolytic peptides) perspective. The roles of FAIMS in the analysis of complex mixtures of multiple intact proteins and in the analysis of multiple conformers of a single protein are assessed. Similarly, the application of FAIMS in proteomics and targeted analysis of peptides are considered.
Graphical Abstract ?
  相似文献   

17.
The visible photodissociation mechanisms of QSY7-tagged peptides of increasing size have been investigated by coupling a mass spectrometer and an optical parametric oscillator laser beam. The experiments herein consist of energy resolved collision- and laser-induced dissociation measurements on the chromophore-tagged peptides. The results show that fragmentation occurs by similar channels in both activation methods, but that the branching ratios are vastly different. Observation of a size-dependent minimum laser pulse energy required to induce fragmentation, and collisional cooling rates in time resolved experiments show that laser-induced dissociation occurs through the absorption of multiple photons by the chromophore and the subsequent heating through vibrational energy redistribution. The differences in branching ratio between collision- and laser-induced dissociation can then be understood by the highly anisotropic energy distribution following absorption of a photon.
Graphical Abstract ?
  相似文献   

18.
Top-down ultraviolet photodissociation (UVPD) allows greater sequence coverage than any other currently available method, often fracturing the vast majority of peptide bonds in whole proteins. At the same time, UVPD can be used to dissociate noncovalent complexes assembled from multiple proteins without breaking any covalent bonds. Although the utility of these experiments is unquestioned, the mechanism underlying these seemingly contradictory results has been the subject of many discussions. Herein, some fundamental considerations of photochemistry are briefly summarized within the context of a proposed mechanism that rationalizes the experimental results obtained by UVPD. Considerations for future instrument design, in terms of wavelength choice and power, are briefly discussed.
Graphical Abstract ?
  相似文献   

19.
The development of rapid, sensitive, and accurate mass spectrometric methods for measuring peptides, proteins, and even intact protein assemblies has made mass spectrometry (MS) an extraordinarily enabling tool for structural biology. Here, we provide a personal perspective of the increasingly useful role that mass spectrometric techniques are exerting during the elucidation of higher order protein structures. Areas covered in this brief perspective include MS as an enabling tool for the high resolution structural biologist, for compositional analysis of endogenous protein complexes, for stoichiometry determination, as well as for integrated approaches for the structural elucidation of protein complexes. We conclude with a vision for the future role of MS-based techniques in the development of a multi-scale molecular microscope.
Graphical Abstract ?
  相似文献   

20.
We have developed a multimodal ion source design that can be configured on the fly for various analysis modes, designed for more efficient and reproducible sampling at the mass spectrometer atmospheric pressure (AP) interface in a number of different applications. This vacuum-assisted plasma ionization (VaPI) source features interchangeable transmission mode and laser ablation sampling geometries. Operating in both AC and DC power regimes with similar results, the ion source was optimized for parameters including helium flow rate and gas temperature using transmission mode to analyze volatile standards and drug tablets. Using laser ablation, matrix effects were studied, and the source was used to monitor the products of model prebiotic synthetic reactions.
Graphical Abstract ?
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号