首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pomegranate from the plant Punica granatum L. possesses strong antioxidant and anti-inflammatory properties. Recently, we have demonstrated that treatment of normal human epidermal keratinocytes with pomegranate fruit extract (PFE) inhibited UVB-mediated activation of nuclear factor kappa B (NF-κB) and mitogen activated protein kinases pathways. Here, we evaluated the effect of PFE on early biomarkers of photocarcinogenesis employing SKH-1 hairless mice. PFE was provided in drinking water (0.2%, wt/vol) to SKH-1 hairless mice for 14 days before a single UVB (180 mJ cm−2) irradiation. We found that oral feeding of PFE inhibited UVB-induced: (1) skin edema; (2) hyperplasia; (3) infiltration of leukocytes; (4) lipid peroxidation; (5) hydrogen peroxide generation; (6) ornithine decarboxylase (ODC) activity; and (7) ODC, cyclooxygenase-2 and proliferating cell nuclear antigen protein expression. Oral feeding of PFE enhanced repair of UVB-mediated formation of cyclobutane pyrimidine dimers (CPDs) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG). Importantly, PFE treatment further enhanced UVB-mediated increase in tumor suppressor p53 and cyclin kinase inhibitor p21. Furthermore, oral feeding of PFE inhibited UVB-mediated: (1) nuclear translocation of NF-κB; (2) activation of IKKα; and (3) phosphorylation and degradation of IκBα. Taken together, we provide evidence that oral feeding of PFE to mice affords substantial protection from the adverse effects of UVB radiation via modulation in early biomarkers of photocarcinogenesis and provide suggestion for its photochemopreventive potential.  相似文献   

2.
Exposure to ultraviolet radiation is closely linked to the development of skin cancers in humans. The ultraviolet B (UVB) radiation wavelength (280–320 nm), in particular, causes DNA damage in epidermal keratinocytes, which are linked to the generation of signature premalignant mutations. Interactions between dermal fibroblasts and keratinocytes play a role in epidermal repair and regeneration after UVB‐induced damage. To investigate these processes, established two and three‐dimensional culture models were utilized to study the impact of fibroblast–keratinocyte crosstalk during the acute UVB response. Using a coculture system it was observed that fibroblasts enhanced keratinocyte survival and the repair of cyclobutane pyrimidine dimers (CPDs) after UVB radiation exposure. These findings were also mirrored in irradiated human skin coculture models employed in this study. Fibroblast coculture was shown to play a role in the expression and activation of members of the apoptotic cascade, including caspase‐3 and Bad. Interestingly, the expression and phosphorylation of p53, a key player in the regulation of keratinocyte cell fate postirradiation, was also shown to be influenced by fibroblast‐produced factors. This study highlights the importance of synergistic interactions between fibroblasts and keratinocytes in maintaining a functional epidermis while promoting repair and regeneration following UVB radiation‐induced damage.  相似文献   

3.
Ultraviolet B (UVB) irradiation is one of the most dangerous insults for skin and causes sunburn, erythema, photoaging and photocarcinogenesis. Curcumin (diferuloylmethane), a yellow spice derived from dried rhizomes of Curcuma longa, has been shown to possess significant anti‐inflammatory, antioxidant, anticarcinogenic, antimutagenic, anticoagulant and anti‐infective effects. However, the protective effects of curcumin against acute photo‐damage are poorly understood. In this study, we investigated the photoprotective effects of curcumin against UVB‐induced acute photo‐damage in hairless mice and immortalized human keratinocytes (HaCaT). Topical application of curcumin significantly inhibited acute UVB (540 mJ cm?2, for 3 successive days)‐induced inflammatory cells, collagen accrementition derangement and lipid peroxidation, and effectively induced NF‐E2‐related factor 2 (Nrf2) nuclear accumulation in uncovered (Uncv) hairless mice skin. Treatment of HaCaT cells with curcumin significantly attenuated acute UVB (300 mJ cm?2)‐induced lactate dehydrogenase release, intracellular reactive oxygen species production and DNA damage, activated the expression of the phase II detoxifying enzymes and promoted DNA repair activity. The photoprotective effect provided by curcumin was potential associated with modulation of Nrf2‐dependent antioxidant response. Our study suggested that curcumin is a potential agent for preventing and/or treating UV radiation‐induced acute inflammation and photoaging.  相似文献   

4.
Malaysian tualang honey possesses strong antioxidant and anti‐inflammatory properties. Here, we evaluated the effect of tualang honey on early biomarkers of photocarcinogenesis employing PAM212 mouse keratinocyte cell line. Keratinocytes were treated with tualang honey (1.0%, v/v) before a single UVB (150 mJ cm?2) irradiation. We found that the treatment of tualang honey inhibited UVB‐induced DNA damage, and enhanced repair of UVB‐mediated formation of cyclobutane pyrimidine dimers and 8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine. Treatment of tualang honey inhibited UVB‐induced nuclear translocation of NF‐κB and degradation of IκBα in murine keratinocyte cell line. The treatment of tualang honey also inhibited UVB‐induced inflammatory cytokines and inducible nitric oxide synthase protein expression. Furthermore, the treatment of tualang honey inhibited UVB‐induced COX‐2 expression and PGE2 production. Taken together, we provide evidence that the treatment of tualang honey to keratinocytes affords substantial protection from the adverse effects of UVB radiation via modulation in early biomarkers of photocarcinogenesis and provide suggestion for its photochemopreventive potential.  相似文献   

5.
UVB radiation contributes to both direct and indirect damage to the skin including the generation of free radicals and reactive oxygen species (ROS), inflammatory responses, immunosuppression and gene mutations, which can ultimately lead to photocarcinogenesis. A plant‐derived flavonoid, baicalin, has been shown to have antioxidant, anti‐inflammatory and free radical scavenging activities. Previous studies from our laboratory have shown that in murine skin, Toll‐like receptor‐4 (TLR4) enhanced both UVB‐induced DNA damage and inflammation. The aim of this study was to investigate the efficacy of baicalin against TLR4‐mediated processes in the murine keratinocyte PAM 212 cell line. Our results demonstrate that treating keratinocytes with baicalin both before and after UV radiation (100 mJ cm?2) significantly inhibited the level of intracellular ROS and decreased cyclobutane pyrimidine dimers and 8‐Oxo‐2′‐deoxyguanosine (8‐oxo‐dG)—markers of DNA damage. Furthermore, cells treated with baicalin demonstrated an inhibition of TLR4 and its downstream signaling molecules, MyD88, TRIF, TRAF6 and IRAK4. TLR4 pathway inhibition resulted in NF‐κB inactivation and down‐regulation of iNOS and COX‐2 protein expression. Taken together, baicalin treatment effectively protected keratinocytes from UVB‐induced inflammatory damage through TLR pathway modulation.  相似文献   

6.
Melanoma incidences are increasing rapidly, and ultraviolet (UV) radiation from the sun is believed to be its major contributing factor. UV exposure causes DNA damage in skin which may initiate cutaneous skin cancers including melanoma. Melanoma arises from melanocytes, the melanin‐producing skin cells, following genetic dysregulations resulting into hyperproliferative phenotype and neoplastic transformation. Both UVA and UVB exposures to the skin are believed to trigger melanocytic hyperplasia and melanomagenesis. Melanocytes by themselves are deficient in repair of oxidative DNA damage and UV‐induced photoproducts. Nicotinamide, an active form of vitamin B3 and a critical component of the human body's defense system has been shown to prevent certain cancers including nonmelanoma skin cancers. However, the mechanism of nicotinamide's protective effects is not well understood. Here, we investigated potential protective effects and mechanism of nicotinamide against UVA‐ and/or UVB‐ induced damage in normal human epidermal melanocytes. Our data demonstrated an appreciable protective effect of nicotinamide against UVA‐ and/or UVB‐ induced DNA damage in melanocytes by decreasing both cyclobutane pyrimidine dimers and 8‐hydroxy‐2′‐deoxyguanosine levels. We found that the photoprotective response of nicotinamide was associated with the activation of nucleotide excision repair genes and NRF2 signaling. Further studies are needed to validate our findings in in vivo models.  相似文献   

7.
Schinus terebinthifolius is a plant rich in phenolic compounds, which have antioxidant properties and can provide new opportunities for treatment and prevention of diseases mediated by ultraviolet radiation like photoaging and skin cancer. The aim of this study was to evaluate the photoprotective potential and ex vivo percutaneous penetration of the crude extract of Schinus terebinthifolius leaves. The extract was tested for antioxidant activity using the 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) method and β‐carotene bleaching test. The sun protection factor was also evaluated. The ex vivo skin permeation of the emulsion and gel formulations were assayed. Fractionation of the extract resulted in gallic acid, ethyl gallate and a mixture of flavonoids, suggesting derivatives of quercetin and myricetin. The phenolic content of the extract was 384.64 ± 2.60 mg GAE g?1 extract. The antioxidant activity was superior to butylated hydroxytoluene, in DPPH method, and ascorbic acid and rutin, in β‐carotene bleaching assay. The extract showed UV absorption with photoprotector potential in the UVB region. The photoacoustic spectroscopy measurements confirmed absorption in the UV region and topical application of the formulations caused no histological changes in the rats' skin. These results suggest that the crude extract of Schinus terebinthifolius leaves may be a promising natural sunscreen product.  相似文献   

8.
In this study, we investigated the protective effects of a peptide (YGDEY, Tyr‐Gly‐Asp‐Glu‐Tyr) isolated from tilapia skin gelatin hydrolysates (TGHs), against UVB‐induced photoaging in human keratinocytes (HaCaT) cells. Results showed that YGDEY significantly decreased levels of intracellular reactive oxygen species (ROS), increased antioxidant factors (Superoxide Dismutase, SOD and Glutathione, GSH) expression and maintained balance between GSH and GSSG in HaCaT cells. Comet assay shows that YGDEY can protect DNA from oxidative damage. Furthermore, it significantly inhibited MMP‐1 (collagenase) and MMP‐9 (gelatinase) expression and increased Type I procollagen production. In addition, the molecular docking study showed that YGDEY may form active sites with MMP‐1 and MMP‐9. Moreover, Western blot analysis was utilized to measure the protein levels of UVB‐induced mitogen‐activated protein kinase (MAPK) and nuclear factor‐kappa B (NF‐κB) signaling pathways. Therefore, these results suggested that YGDEY has a therapeutic effectiveness in prevention of UVB‐induced cellular damage, and it is a candidate worthy of being developed as a potential natural antioxidant and food additive.  相似文献   

9.
10.
UVB (280–315 nm) in natural sunlight represents a major environmental challenge to the skin and is clearly associated with human skin cancer. Here we demonstrate that low doses of UVB induce keratinocyte proliferation and cell cycle progression of human HaCaT keratinocytes. Different from UVA, UVB irradiation induced extracellular signal‐regulated kinase (ERK) and AKT activation and their activation are both required for UVB‐induced cell cycle progression. Activation of epidermal growth factor receptor (EGFR) was observed after UVB exposure and is upstream of ERK/AKT/cyclin D1 pathway activation and cell cycle progression following UVB radiation. Furthermore, metalloproteinase (MP) inhibitor GM6001 blocked UVB‐induced ERK and AKT activation, cell cycle progression, and decreased the EGFR phosphorylation, demonstrating that MPs mediate the EGFR/ERK/AKT/cyclin D1 pathways and cell cycle progression induced by UVB radiation. In addition, ERK or AKT activation is essential for EGFR activation because ERK or AKT inhibitor blocks EGFR activation following UVB radiation, indicating that EGFR/AKT/ERK pathways form a regulatory loop and converge into cell cycle progression following UVB radiation. Identification of these signaling pathways in UVB‐induced cell cycle progression of quiescent keratinocytes as a process mimicking tumor promotion in vivo will facilitate the development of efficient and safe chemopreventive and therapeutic strategies for skin cancer.  相似文献   

11.
Chronic skin exposure to ultraviolet light stimulates the production of cytokines known to be involved in the initiation of skin cancer. Recent studies in mouse models suggested a role for macrophage migration inhibitory factor (MIF) in the UVB‐induced pathogenesis of nonmelanoma skin cancer (NMSC). Our studies aimed at defining the pathophysiological function of MIF in cutaneous inflammatory reactions and in the development and progression of NMSC. Immunohistochemical analysis revealed a moderate expression of MIF in normal human skin samples but an enhanced expression of this cytokine in lesional skin of patients with actinic keratosis or cutaneous SCC. Enzyme‐linked immunosorbent assay studies showed a time‐dependent increase in MIF secretion after a moderate single‐dose UVB irradiation in NHEKs and SCC tumor cells. MIF is known to interact with CXCR2, CXCR4 and CD74. These receptors are not constitutively expressed in keratinocytes and HaCaT cells and their expression is not induced by UVB irradiation either. However, stimulation with IFNγ upregulated CD74 surface expression in these cells. Affymetrix® Gene Chip analysis revealed that only keratinocytes prestimulated with IFNγ are responsive to MIF. These findings indicate that MIF may be an important factor in the pathogenesis of NMSC tumorigenesis and progression in an inflammatory environment.  相似文献   

12.
13.
Nonmelanoma skin cancer, derived from epidermal keratinocytes, is the most common malignancy in organ transplant recipients, causes serious morbidity and mortality, and is strongly associated with solar ultraviolet (UV) exposure. Preventing and treating skin cancer in these individuals has been extraordinarily challenging. Following organ transplantation, the immunosuppressants are used to prevent graft rejection. Until now, immunosuppression has been assumed to be the major factor leading to skin cancer in this setting. However, the mechanism of skin carcinogenesis in organ transplant recipients has not been understood to date; specifically, it remains unknown whether these cancers are immunosuppression‐dependent or ‐independent. In particular, it remains poorly understood what is the mechanistic carcinogenic action of the newer generation of immunosuppressants including tacrolimus and mycophenolate mofetil (MMF). Here, we show that tacrolimus and MMF impairs UVB‐induced DNA damage repair and apoptosis in human epidermal keratinocytes. In addition, tacrolimus inhibits UVB‐induced checkpoint signaling. However, MMF had no effect. Our findings have demonstrated that tacrolimus and MMF compromises proper UVB response in keratinocytes, suggesting an immunosuppression‐independent mechanism in the tumor‐promoting action of these immunosuppressants.  相似文献   

14.
Exposure of human skin to ultraviolet (UV) radiation causes significant damage to that tissue. The effects of UV on the skin mainly include acute inflammation (erythema/edema) and abnormal keratinization wherein prostaglandin E2 (produced by cyclooxygenase‐2), interleukin‐8 and transglutaminase 1 (a major regulatory factor of keratinization) play pivotal roles. Later phases of UV‐induced skin reactions include hyperpigmentation, wrinkle formation and carcinogenesis, the former two being associated with the UVB‐induced production and/or secretion of endothelin‐1, stem cell factor and granulocyte‐macrophage colony‐stimulating factor by keratinocytes in the epidermis. Those paracrine factors then stimulate expression of the critical melanogenic enzyme tyrosinase by melanocytes in the epidermis and increase expression of neprilysin, an enzyme that degrades elastin, by fibroblasts in the dermis. This review summarizes the biological effects of the xanthophyll carotenoid astaxanthin, which prevents UV‐induced cutaneous inflammation, abnormal keratinization and wrinkling as well as pigmentation of the skin even by its postirradiation treatment.  相似文献   

15.
16.
Photoaging and glycation stress are major causes of skin deterioration. Oxidative stress caused by ultraviolet B (UVB) irradiation can upregulate matrix metalloprotease 1 (MMP‐1), a major enzyme responsible for collagen damage in the skin. Advanced glycation end products (AGEs) accumulate via gradual formation from skin proteins, especially from long‐lived proteins such as dermal elastin and collagen. Plantamajoside (PM), isolated from Plantago asiatica, has various biological effects including anti‐inflammatory and antioxidant effects. In this study, we assessed the protective effects of PM on a human keratinocyte cell line (HaCaT) and primary human dermal fibroblasts (HDF) against stress caused by glyceraldehyde‐induced AGEs (glycer‐AGEs) with UVB irradiation. We found that PM attenuated UVB‐ and‐glycer‐AGEs‐induced MMP‐1 expression in HaCaT and HDF cells and proinflammatory cytokines expression by inhibiting the phosphorylation of mitogen‐activated protein kinases (MAPKs) activated by reactive oxygen species. Specific inhibitors of NF‐κB and MAPKs attenuated the induced expression of MMP‐1. PM also inhibited the phosphorylation of IκBα, and reduced nuclear translocation of NF‐κB in these cells. Furthermore, PM attenuated the upregulation of receptor for AGEs (RAGE) by glycer‐AGEs with UVB irradiation. Therefore, our findings strongly suggest that PM is a promising inhibitor of skin photoaging.  相似文献   

17.
Erythema (i.e. visible redness) and DNA damage caused by ultraviolet radiation (UVR) in human skin have similar action spectra and show good correlation after a single exposure to UVR. We explored the potential to use instrumental assessments of erythema as a surrogate for DNA damage after repeated exposures to UVR. We exposed 40 human subjects to three different exposure schedules using two different UVR sources. Cyclobutane‐pyrimidine dimers (CPDs) in skin biopsies were measured by immunofluorescence, and erythema was assessed by both the Erythemal Index (EI) and the Oxy‐hemoglobin (Oxy‐Hb) content. Surprisingly, the skin with the highest cumulative dose ended up with the lowest level of DNA damage, and with the least erythema, as assessed by Oxy‐Hb (but not EI) 24 h after the last UV exposure. Although the level of CPDs, on average, paralleled Oxy‐Hb (R2 = 0.80–0.94, P = 0.03–0.11), the correlation did not hold for the pooled individual measurements (R2 = 0.009, P = 0.37) due to potential individual differences in UV‐induced photoadaptation. We suggest that the methodology may be optimized to improve the correlation between DNA damage level and erythema to enable noninvasive risk assessment based on erythema/Oxy‐Hb content for individual human subjects.  相似文献   

18.
19.
UVA irradiation is known to cause photoaging via production of reactive oxygen species (ROS) and activation of inflammatory processes. Previously, we have demonstrated that baicalin, a plant‐derived flavonoid possessing both antioxidant and anti‐inflammatory activity, protects mouse keratinocytes against damage from UVB irradiation. However, the role of baicalin in vivo has not been well studied, particularly in the setting of UVA irradiation. To explore the protective effects and mechanisms of baicalin treatment in mice after UVA irradiation, mice were exposed to acute and chronic doses of UVA irradiation with or without baicalin or vehicle. Skin samples were collected for histological staining, RNA isolation, flow cytometry and protein extraction. Our results demonstrate the protective effect of baicalin against UVA‐induced oxidative damage and inflammation in mouse skin. These effects are likely mediated via the TLR4 pathway, which may serve as a target for photochemoprevention against skin inflammation.  相似文献   

20.
People can get oral cancers from UV (290–400 nm) exposures. Besides high outdoor UV exposures, high indoor UV exposures to oral tissues can occur when consumers use UV‐emitting tanning devices to either tan or whiten their teeth. We compared the carcinogenic risks of skin to oral tissue cells after UVB (290–320 nm) exposures using commercially available 3D‐engineered models for human skin (EpiDerm?), gingival (EpiGing?) and oral (EpiOral?) tissues. To compare the relative carcinogenic risks, we investigated the release of cytokines, initial DNA damage in the form of cyclobutane pyrimidine dimers (CPDs), repair of CPDs and apoptotic cell numbers. We measured cytokine release using cytometric beads with flow cytometry and previously developed a fluorescent immunohistochemical assay to quantify simultaneously CPD repair rates and apoptotic cell numbers. We found that interleukin‐8 (IL‐8) release and the initial CPDs are significantly higher, whereas the CPD repair rates and apoptotic cell numbers are significantly lower for oral compared with skin tissue cells. Thus, the increased release of the inflammatory cytokine IL‐8 along with inefficient CPD repair and decreased death rates for oral compared with skin tissue cells suggests that mutations are accumulating in the surviving population of oral cells increasing people's risks for getting oral cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号