首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
ABSTRACT. In this paper we develop a micro ecosystem model whose basic entities are representative organisms which behave as if maximizing their net offspring under constraints. Net offspring is increasing in prey biomass intake, declining in the loss of own biomass to predators and Allee's law applies. The organism's constraint reflects its perception of how scarce its own biomass and the biomass of its prey is. In the short‐run periods prices (scarcity indicators) coordinate and determine all biomass transactions and net offspring which directly translates into population growth functions. We are able to explicitly determine these growth functions for a simple food web when specific parametric net offspring functions are chosen in the micro‐level ecosystem model. For the case of a single species our model is shown to yield the well‐known Verhulst‐Pearl logistic growth function. With two species in predator‐prey relationship, we derive differential equations whose dynamics are completely characterized and turn out to be similar to the predator‐prey model with Michaelis‐Menten type functional response. With two species competing for a single resource we find that coexistence is a knife‐edge feature confirming Tschirhart's [2002] result in a different but related model.  相似文献   

2.
In this paper, we propose a bioeconomic model which describes a fishery in which each of two noninteracting species is harvested by a given group of fishers during a defined time period. Then the Fishing Regulatory Authority allows each fisher to reconsider the harvesting decision at fixed (discrete) periods of time. The model derives from an Italian fisheries management experience in the Northern Adriatic Sea, where this kind of “self‐adjusting” fishing policy has been proposed to regulate harvesting of two shellfish species. The proposed dynamic model assumes the form of a hybrid system, as the natural growth functions of the two species (in continuous time) are coupled with a discrete time adaptive system that regulates how agents switch from one harvesting strategy to the other period by period according to an evolutionary mechanism based on profit comparison. In order to obtain some insights into the basic mechanisms of the system, some relevant benchmark cases are analyzed before tackling (mainly numerically) the complete hybrid model. Our results suggest that, for proper sets of parameters, this kind of myopic and adaptive self‐regulation may ensure a virtuous trade‐off between profit maximization and resource conservation, driven by cost externalities and market pressure.  相似文献   

3.
We describe and analyze a bistable reaction-diffusion (RD) model for two interconverting chemical species that exhibits a phenomenon of wave-pinning: a wave of activation of one of the species is initiated at one end of the domain, moves into the domain, decelerates, and eventually stops inside the domain, forming a stationary front. The second ("inactive") species is depleted in this process. This behavior arises in a model for chemical polarization of a cell by Rho GTPases in response to stimulation. The initially spatially homogeneous concentration profile (representative of a resting cell) develops into an asymmetric stationary front profile (typical of a polarized cell). Wave-pinning here is based on three properties: (1) mass conservation in a finite domain, (2) nonlinear reaction kinetics allowing for multiple stable steady states, and (3) a sufficiently large difference in diffusion of the two species. Using matched asymptotic analysis, we explain the mathematical basis of wave-pinning, and predict the speed and pinned position of the wave. An analysis of the bifurcation of the pinned front solution reveals how the wave-pinning regime depends on parameters such as rates of diffusion and total mass of the species. We describe two ways in which the pinned solution can be lost depending on the details of the reaction kinetics: a saddle-node or a pitchfork bifurcation.  相似文献   

4.
We propose a stable finite element method for approximating the flow of a chemically reacting gas mixture in an MOCVD (metal‐organic chemical vapor deposition) reactor. The flow is governed by the full compressible Navier‐Stokes equations extended by transport equations for the chemical species, the energy equations and the equation of state, together with boundary conditions providing information on the reactor geometry and experimental conditions. The equations form a semilinear system with a constraint for which the corresponding pressure term is not the Lagrangian multiplier. An application of our method to a real world model of growth of GaAs shows the consistency with experimental data. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

5.
Abstract Population features inferred from single‐species, age‐structured models are compared to those inferred from a multispecies, age‐structured model that includes predator‐prey interactions among three commercially harvested fish species—walleye pollock, Atka mackerel, and Pacific cod—on the Aleutian Shelf, Alaska. The multispecies framework treats the single‐species models and data as a special case of the multispecies model and data. The same data from fisheries and surveys are used to estimate model parameters for both single‐species and multispecies configurations of the model. Additionally, data from stomach samples and predator rations are used to estimate the parameters of the multispecies model. One form of the feeding functional response, predator pre‐emption, was selected using AIC from seven alternative models for how the predation rate changes with the densities of prey and possibly other predators. Differences in estimated population dynamics and productivity between the multispecies and single‐species models were observed. The multispecies model estimated lower mackerel population sizes from 1964–2003 than the single‐species model, while the spawning biomass of pollock was estimated to have declined more than three times faster since 1964 by the multispecies model. The variances around the estimates of spawning biomass were smaller for mackerel and larger for pollock in the multispecies model compared to the single‐species model.  相似文献   

6.
We investigate the convergence of an implicit Voronoi finite volume method for reaction–diffusion problems including nonlinear diffusion in two space dimensions. The model allows to handle heterogeneous materials and uses the chemical activities of the involved species as primary variables. The numerical scheme works with boundary conforming Delaunay meshes and preserves positivity and the dissipative property of the continuous system. Starting from a result on the global stability of the scheme (uniform, mesh‐independent global upper, and lower bounds), we prove strong convergence of the chemical activities and their gradients to a weak solution of the continuous problem. To illustrate the preservation of qualitative properties by the numerical scheme, we present a long‐term simulation of the Michaelis–Menten–Henri system. Especially, we investigate the decay properties of the relative free energy over several magnitudes of time, and obtain experimental orders of convergence for this quantity. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 141–174, 2016  相似文献   

7.
Abstract The success a species may have invading a patch previously unoccupied is of considerable interest for pest managers and conservation ecologists. The purpose here is to present a mechanistic approach to analyze reproductive Allee effects appearing through the failure in the process of fertilization in a two‐sex population and observe how the survival in an invaded patch is affected. This is in contrast to the usually employed stochastic models with a deterministic skeleton that describe the presence of Allee effects. A Poisson–Ricker model, which includes stochastic demography and sex determination with females classified as successfully fertilized or not fertilized, is used. Numerical approximations to the probabilities of extinction and the mean time to extinction are presented, for fixed parameter values, suggesting how stochasticity in the mating process combined with random fluctuations in the male and female densities, at each generation, contribute to the risk of extinction of a population which started an invasion at a low density.  相似文献   

8.
Point counts are commonly used for bird surveys, but interpretation is ambiguous unless there is an accounting for the imperfect detection of individuals. We show how repeated point counts, supplemented by observation distances, can account for two aspects of the counting process: (1) detection of birds conditional on being available for observation and (2) the availability of birds for detection given presence. We propose a hierarchical model that permits the radius in which birds are available for detection to vary with forest stand age (or other relevant habitat features), so that the number of birds available at each location is described by a Poisson‐gamma mixture. Conditional on availability, the number of birds detected at each location is modeled by a beta‐binomial distribution. We fit this model to repeated point count data of Florida scrub‐jays and found evidence that the area in which birds were available for detection decreased with increasing stand age. Estimated density was 0.083 (95%CI: 0.060–0.113) scrub‐jays/ha. Point counts of birds have a number of appealing features. Based on our findings, however, an accounting for both components of the counting process may be necessary to ensure that abundance estimates are comparable across time and space. Our approach could easily be adapted to other species and habitats.  相似文献   

9.
S. Schlamp  Th. H. Sobota 《PAMM》2002,1(1):260-261
Laser‐induced thermal acoustics is used to measure non‐intrusively the concentration of a resonantly excited seed species (iodine vapor) diluted within a non‐resonantly excited species (nitrogen) by comparing the contributions from thermalization and electrostriction to the density perturbations of a density grating, which is inscribed in the fluid by two pulsed intersecting laser beams. The ratio of the characteristic density perturbation caused by thermalization to the perturbations from electrostriction is proportional to the concentration of the resonant species. The ratio is found by a least‐squares fit of a closed‐form analytical model to the data. When the importances of thermalization and electrostriction are comparable, the uncertainty for the concentration is 5%, but higher when one mechanism's contributions outweigh the other's greatly.  相似文献   

10.
This paper concerns reaction–diffusion systems consisting of three or four equations, which come out of reversible chemistry. We introduce different scalings for those systems, which make sense in various situations (species with very different concentrations or very different diffusion rates, chemical reactions with very different rates, etc.). We show how recently introduced mathematical tools allow to prove that the formal asymptotics associated to those scalings indeed hold at the rigorous level.  相似文献   

11.
Spatial distribution of interacting chemical or biological species is usually described by a system of reaction–diffusion equations. In this work we consider a system of two reaction–diffusion equations with spatially varying diffusion coefficients which are different for different species and with forcing terms which are the gradient of a spatially varying potential. Such a system describes two competing biological species. We are interested in the possibility of long-term coexistence of the species in a bounded domain. Such long-term coexistence may be associated either with a periodic in time solution (usually associated with a Hopf bifurcation), or with time-independent solutions. We prove that no periodic solution exists for the system. We also consider some steady states (the time-independent solutions) and examine their stability and bifurcations.  相似文献   

12.
ABSTRACT. This paper explores the effects of using marine reserves as a measure to control bycatch that is of no commercial value, under different assumptions regarding the ecological interactions between targeted species and that taken as bycatch. Three cases are examined: (1) no ecological interactions between the two species, (2) targeted and bycatch species exist in a predator‐prey relationship and (3) species compete. Targeted species is assumed to consist of two sub‐populations that are discretely distributed in space, but linked through density dependent migration while bycatch species is assumed to consist of one uniformly distributed stock only. In each case the equilibrium stock levels of targeted and by‐catch species, effort and harvest are numerically calculated and compared, assuming pure open access and open access in combination with a reserve. It is of special interest to identify circumstances that allows for a win‐win situation, that is, both harvest of the targeted species and biomass of the bycatch species increase. It is shown that the ecological interactions between the two species influence the possibility of actually protecting the bycatch species through the use of a reserve, the possibility a win‐win situation, and the issue of what patch to close.  相似文献   

13.
Abstract The idea that species loss diminishes future information flows is a cornerstone of arguments for conservation planning. In his seminal work entitled The Noah's Ark Problem, Weitzman [1998] examines the problem of cost‐effective conservation planning from a theoretical perspective accounting for the affect planning has on the expected size of the biosphere's informative potential. This paper extends Weitzman's analysis by examining how his conclusions are altered by the introduction of a conservation authority that considers the value of information contained in the biosphere. Introducing nonquasiconcave preferences for the information contained in each species substantially modifies the characterization of a cost‐effective conservation plan. In particular, I find that a cost‐effective plan generally includes partial funding for many species and funds no species completely. This investigation is motivated by theoretical contributions to the information economics literature, a la Radner and Stiglitz [1984] , showing that the value function for information tends to exhibit increasing returns.  相似文献   

14.
ABSTRACT. We introduce a metapopulation model that includes both landscape changes (patch destruction and recreation) and age‐dependent metapopulation dynamics. A threshold quantity is derived and related to the existence of an ecologically nontrivial equilibrium, to the stability of the species‐free equilibrium, and to weak and strong persistence of the species. We provide examples to illustrate how age‐related changes in patch colonization and extinction rates can alter metapopulation persistence. Future field studies may need to address the temporal dynamics that characterize local populations in fragmented landscapes.  相似文献   

15.
We present a multispecies stochastic model that suggests optimal fishing policy for two species in a three‐species predator–prey ecosystem in the Barents Sea. We employ stochastic dynamic programming to solve a three‐dimensional model, in which the catch is optimized by using a multispecies feedback strategy. Applying the model to the cod, capelin, and herring ecosystem in the Barents Sea shows that the optimal catch for the stochastic interaction model is more conservative than that implied by the deterministic model. We also find that stochasticity has a stronger effect on the optimal exploitation policy for prey (capelin) than for predator (cod).  相似文献   

16.
This work provides a mathematical model for a predator‐prey system with general functional response and recruitment, which also includes capture on both species, and analyzes its qualitative dynamics. The model is formulated considering a population growth based on a general form of recruitment and predator functional response, as well as the capture on both prey and predators at a rate proportional to their populations. In this sense, it is proved that the dynamics and bifurcations are determined by a two‐dimensional threshold parameter. Finally, numerical simulations are performed using some ecological observations on two real species, which validate the theoretical results obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
We study the multiphases in the KdV zero‐dispersion limit. These phases are governed by the Whitham equations, which are 2g + 1 quasi‐linear hyperbolic equations where g is the number of phases. We are interested in both the interaction of two single phases and the breaking of a single phase for general initial data. We analyze in detail how a double phase is generated from the interaction or breaking, how it propagates in space‐time, and how it collapses to a single phase in a finite time. The Whitham equations are known to be integrable via a hodograph transform. The crucial step in our approach is to formulate the hodograph transform in terms of the Euler‐Poisson‐Darboux solutions. Under our scheme, the zeros of the Jacobian of the transform are given by the zeros of the Euler‐Poisson‐Darboux solution. Hence, the problem of inverting the hodograph transform to give the Whitham solution reduces to that of counting the zeros of the Euler‐Poisson‐Darboux solution. © 2002 Wiley Periodicals, Inc.  相似文献   

18.
In this paper, a diffusive predator–prey system, in which the prey species exhibits herd behavior and the predator species with quadratic mortality, has been studied. The stability of positive constant equilibrium, Hopf bifurcations, and diffusion‐driven Turing instability are investigated under the Neumann boundary condition. The explicit condition for the occurrence of the diffusion‐driven Turing instability is derived, which is determined by the relationship of the diffusion rates of two species. The formulas determining the direction and the stability of Hopf bifurcations depending on the parameters of the system are derived. Finally, numerical simulations are carried out to verify and extend the theoretical results and show the existence of spatially homogeneous periodic solutions and nonconstant steady states. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The natural species are likely to present several interesting and complex phenomena under random perturbations, which have been confirmed by simple mathematical models. The important questions are: how the random perturbations influence the dynamics of the discrete population models with multiple steady states or multiple species interactions? and is there any different effects for single species and multiple species models with random perturbation? To address those interesting questions, we have proposed the discrete single species model with two stable equilibria and the host-parasitoid model with Holling type functional response functions to address how the random perturbation affects the dynamics. The main results indicate that the random perturbation does not change the number of blurred orbits of the single species model with two stable steady states compared with results for the classical Ricker model with same random perturbation, but it can strength the stability. However, extensive numerical investigations depict that the random perturbation does not influence the complexities of the host-parasitoid models compared with the results for the models without perturbation, while it does increase the period of periodic orbits doubly. All those confirm that the random perturbation has a reverse effect on the dynamics of the discrete single and multiple population models, which could be applied in reality including pest control and resources management.  相似文献   

20.
The present note deals with a nonstandard system of differential equations describing a two‐species phase segregation. This system naturally arises in the asymptotic analysis carried out recently by the same authors, as the diffusion coefficient in the equation governing the evolution of the order parameter tends to zero. In particular, an existence result has been proved for the limit system in a very general framework. On the contrary, uniqueness was shown by assuming a constant mobility coefficient. Here, we generalize this result and prove a continuous dependence property in the case that the mobility coefficient suitably depends on the chemical potential. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号