首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of lipophilic anionic and cationic additives on the potentiometric anion selectivities of polymer membrane electrodes prepared with various metalloporphyrins as anion selective ionophores is examined. The presence of lipophilic anionic sites (e.g. tetraphenylborate derivatives) is shown to enhance the non-Hofmeister anion selectivities of membranes doped with In(III) and Sn(IV) porphyrins. In contrast, membranes containing Co(III) porphyrins require the addition of lipophilic cationic sites (e.g. tridodecylmethylammonium ions) in order to achieve optimal anion selectivity (for nitrite and thiocyanate) as well as rapid and reversible Nernstian response toward these anionic species. These experimental results coupled with appropriate theoretical models that predict the effect of lipophilic anion and cation sites on the selectivities of membranes doped with either neutral or charged carrier type ionophores may be used to determine the operative ionophore mechanism of each metalloporphyrin complex within the organic membrane phase.  相似文献   

2.
Lipophilic compounds combining oxy- and ester-groups are synthesized and studied as neutral ionophores in plasticized PVC membranes for the development of novel water hardness ion-selective electrodes. Electrodes based on the ionophores studied showed a higher selectivity to calcium over magnesium ions. However, for electrodes based on hexadecyl-4-hydroxybutanoate or decyloxybutanol this preference turned to be rather low: logKCaMg=–(0.5–0.7). Electrodes with membranes containing hexadecyl-4- hydroxybutanoate, 0.3 M as a neutral ionophore and bis[4-(1,1,3,3-tetramethylbutyl)phenyl]phosphate, 0.01 M as a charged ionophore, in combination with Ca2+-selective electrode based on ETH 1001 as ionophore, proved to be suitable for measurements of water hardness, also for the measurement of Mg2+ ion content in artificial aquarium fish-breeding water samples and in samples modeling electrolyte composition of blood serum.  相似文献   

3.
《Analytica chimica acta》2004,514(1):99-106
Cl-ion sensitive ISFETs with photocured polyurethane-based polymer membranes with six different ionophores (ETH 9033, ETH 9009, MnTPPCl, organotin compounds and traditional ion-exchanger TDMACl) have been studied in pure NaCl solutions and in background solutions containing anions in concentrations normally found in a whole blood and serum. PVC or silicon resin were used to form the membranes in cases when it was not possible to use the photocurable polymer composition. Experimental results on determination of chloride ions in serum samples are presented. Performed tests showed that all chloride-selective ionophores commercially proposed up to now, both neutral and charged carriers, do not provide better selectivity and stability of chloride ion sensors for clinical application than the traditional anionic ion-exchanger TDMACl.  相似文献   

4.
Bulk optode membranes based on a recently reported thiaglutaric diamide ionophore were developed for measurements of silver(I) and copper(II) ions in aqueous solutions. The response properties of optical films containing ionophore and chromoionophores with different pK(a) values were investigated at different sample pH. At certain pH the measuring range of the optode can be shifted when choosing different chromoionophores. Optode with ionophore and chromoionophore V exhibited good responses to silver ions from 10(-6) - 10(-1) M at pH 5.5. The proposed sensor showed high selectivity, good reproducibility and stability. With a different chromoionophore ETH 5418 the optode could response to copper(II) ions from 10(-6) - 10(-2) M.  相似文献   

5.
Fabrication of PVC membrane electrodes incorporating selective neutral carriers for Cd(2+) was reported. The ionophores were designed to have different topologies, donor atoms and lipophilicity by attaching tripodal amine (TPA) units to the lipophilic anthracene (ionophore I) and p-tert-butylcalix[4]arene (ionophores II, III and IV). The synthesized ionophores were incorporated to the plasticized PVC membranes to prepare Cd(II) ion selective electrodes (ISEs). The membrane electrodes were optimized by changing types and amounts of ionic sites and plasticizers. The selectivity of the membranes fabricated from the synthesized ionophores was evaluated, the relationship between structures of ionophores and membrane characteristics were explored. The ionophore IV which composed of two opposites TPA units on the calix[4]arene compartment showed the best selectivity toward Cd(2+). The best membrane electrode was fabricated from ionophore IV (10.2 mmol kg(-1)) with KTpClPB (50.1 mol% related to the ionophore) as an ion exchanger incorporated in the DOS plasticized PVC membrane (1:2; PVC:DOS). The Cd-ISE fabricated from ionophore IV exhibited good properties with a Nernstian response of 29.4±0.6 mV decade(-1) of activity for Cd(2+) ions and a working concentration range of 1.6×10(-6)-1.0×10(-2)M. The sensor has a fast response time of 10s and can be used for at least 1 week without any divergence in potential. The electrode can be used in the pH range of 6.0-9.0. The proposed electrodes using ionophores III and IV were employed as a probe for determining Cd(2+) from the oxidation of CdS QDs solution and the real treatment waste water sample with excellent results.  相似文献   

6.
Poly(vinyl chloride) polymeric membranes plasticized with o-NPOE (o-nitrophenyl octyl ether) or DOS (dibutyl sebacate) and containing Zr(IV)-octaethyl(OEP)- or Zr(IV)-tetraphenylporphyrins (TPP) along with lipophilic cationic additives (tridodecylmethylammonium chloride; TDMACl) are examined potentiometrically and optically with respect to their response toward fluoride. It is shown that these zirconium porphyrins can function as neutral anion carriers within the organic membranes of the electrodes. Spectrophotometric measurements of thin polymeric films indicate that the presence of lipophilic cationic sites in the form of TDMA+ and use of lower dielectric constant plasticizer (DOS) prevents formation of metalloporphyrin dimers in the organic polymer phase, which have been observed previously in polymeric membranes formulated with the same Zr(IV) porphyrins but with lipophilic anion site additives. By preventing dimer formation, rapid and Nernstian potentiometric response of the corresponding membrane electrodes toward fluoride ion is observed. Indeed, electrodes prepared with PVC/DOS membranes containing Zr(IV)-OEP and 15 mol% of TDMACl (relative to the ionophore) exhibit fast (t95<15 s) and reversible response toward fluoride. The slope of calibration plots are near-Nernstian (−59.9 mV per decade). Such electrodes display the following selectivity pattern: ClO4>SCN>F>NO3>Br>Cl, which differs significantly from the classical Hofmeister series, with greatly enhanced potentiometric selectivity toward fluoride. The data presented herein, coupled with results from a previous study, confirm that Zr(IV) porphyrins can serve as either charged or neutral type anion carriers with respect to their enhanced interactions with fluoride when used as ionophores to prepare liquid-polymeric membrane electrodes, and that the nature of membrane additives and plasticizer dictates the response mechanism at play for given membrane formulations.  相似文献   

7.
Metallo-salens of cobalt(II) (Co-Sal), chromium(III) (Cr-Sal), and aluminum(III) (Al-Sal) are used as the active ionophores within plasticized poly(vinyl chloride) membranes. It is shown that central metal-ion plays a critical role in directing the ionophore selectivity. Polymer-membrane electrodes based on Co-Sal, Cr-Sal, and Al-Sal are demonstrated to exhibit enhanced responses and selectivity toward nitrite/thiocyanate, thiocyanate, and fluoride anions, respectively. The improved anion selectivity of the three ionophore systems is shown to deviate significantly from the classical Hofmeister pattern that is based only on ion lipophilicity. For example, optimized membrane electrodes for nitrite ion based on Co-Sal exhibit logK(Nitrite,Anion)(pot) values of -5.22, -4.66, -4.48, -2.5 towards bromide, perchlorate, nitrate, and iodide anions, respectively. Optimized membrane electrodes based on Co-Sal and Cr-Sal show near-Nernstian responses towards nitrite (-57.9+/-0.9 mV/decade) and thiocyanate (-56.9+/-0.8 mV/decade), respectively, with fast response and recovery times. In contrast, Al-Sal based membrane electrodes respond to fluoride ion in a super-Nernstian (-70+/-3 mV/decade) and nearly an irreversible mode. The operative response mechanism of Co-Sal, Cr-Sal, and Al-Sal membrane electrodes is examined using the effect of added ionic sites on the potentiometric response characteristics. It is demonstrated that addition of lipophilic anionic sites to membrane electrodes based on the utilized metallo-salens enhances the selectivity towards the primary ion, while addition of cationic sites resulted in Hofmeister selectivity patterns suggesting that the operative response mechanism is of the charged carrier type. Electron spin resonance (ESR) data indicates that Co(II) metal-ion center of Co-Sal ionophore undergoes oxidation to Co(III). This process leads to formation of a charged anion-carrier that is consistent with the response behavior obtained for Co-Sal based membrane electrodes.  相似文献   

8.
The diffusion coefficients of active components in ion-selective membranes have a decisive influence on the life-time and detection limit of the respective ion-selective electrodes, as well as influencing the rate of polarization and relaxation processes of electrically perturbed ion sensors. Therefore, the rational design of mass transport controlled ion-selective electrodes with sub-nanomolar detection limits requires reliable data on the diffusion coefficients. We have implemented electrochemical methods for the quantitative assessment of both the diffusion coefficients of free ionophores and ion-ionophore complexes. The diffusion coefficients of the pH-sensitive chromoionophore ETH 5294 and the calcium-selective ionophore ETH 5234 were determined in plasticized PVC membranes with different PVC to plasticizer ratios. The diffusion coefficient of the free chromoionophore determined by a chronoamperometric method was validated with optical methods for a variety of membrane compositions. The calcium-selective ionophore ETH 5234 was used as a model compound to assess the diffusion coefficient of the ion-ionophore complex calculated from the time required for the complexes to cross a freshly prepared membrane during potentiometric ion-breakthrough experiments. The difference between the diffusion coefficients of the free ionophore ETH 5234 and the ion-ionophore complex was found to be significant and correlated well with the geometry of the respective species.  相似文献   

9.
Partitioning of ions from water to the membrane solvent (NPOE) can be quantified by Gibbs free energies of transfer, deltaG(tr,NPOE)(ion). These were derived from transport studies of lipophilic salts through supported liquid membranes (SLMs) in the absence of the carrier. Partition coefficients Kp for various salts can now be calculated. The neutral anion receptors uranyl sal(oph)enes 1-5 transport Cl- and H2PO4- as tetrapropylammonium salts. The transport is diffusion-limited and can be described by two transport parameters Dm and K(ex). From the extraction constants K(ex) and the partition coefficients Kp of the transported salts, the association constants Ka of the anion receptors for Cl- and H2PO4- in NPOE were determined. Competitive transport with carriers 3 and 4 of NPr4H2PO4 and NPr4Cl demonstrated highly selective transport of H2PO4- even in the presence of excess of Cl-.  相似文献   

10.
This paper describes the design, synthesis, and the characterization of the two new chromogenic crown ethers 2,2′-[1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diylbis(methylene)]bis[4-[(1-methyl-4-(1H)-pyridinylidene)ethylidene]-2,5-cyclohexadien-1-one (KBC-001) and the lipophilic derivative 2,2′-[1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diylbis(methylene)]bis[4-[(1-dodecyl-4-(1H)-pyridinylidene)ethylidene]-2,5-cyclohexadien-1-one (KBC-002). A merocyanine dye that forms a betainic structure upon intramolecular charge transfer and shows solvent polarity dependent spectral sensitivity was selected as the chromophore system to develop the new chromoionophores. This approach allows the design of overall electrically neutral ligands bearing charged groups without the need of external counter ions. A proton ionizable group in the dye moiety acts as a charged ion-binding site and is an integral part of a lariat crown ether ionophore. A chromoionophore for calcium ion sensing has been developed, which combines the size-selective binding character of a crown ether with strong electrostatic attraction between the positively charged calcium ion and two negatively charged lariat side arms in the overall neutral compound. This water-soluble dye selectively responds to the presence of calcium ions in water at pH 8.5 with a dynamic response range between 10 μM and 10 mM. The binding event can be monitored both by absorption spectrometry and by fluorescence spectrometry. No cross-sensitivity was found for the physiologically important cations Mg2+, Li+, Na+, and K+ up to concentrations of 0.1 M under the same experimental conditions. In contrast to the water-soluble reagent KBC-001, the lipophilized derivative KBC-002 having two long alkyl chains was successfully applied to ion-exchange type optode membranes made from plasticized poly(vinyl chloride) (PVC). The dynamic response range of the optode at pH 9.0 was between 10 μM and 10 mM while retaining the high calcium selectivity.  相似文献   

11.
The extent of ion pairing in chloride and perchlorate salts was studied by measurement of the Cl- and ClO4- resonances and the observation of the perchlorate stretching frequency by use of nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared spectroscopy (FT-IR), respectively, for a variety of ionophores in various solutions and in large unilaminar vesicles (LUVs). The NMR line widths of chloride and perchlorate were larger in solutions containing the neutral ionophores valinomycin (Val) and nonactin (Non) than in solutions containing the negatively charged ionophores nigericin (Nig), lasalocid (Las), and monensin (Mon). The viscosity-corrected perchlorate NMR line widths in solutions containing Val and Las were significantly negatively correlated (r2 > or = 0.99) with the dielectric constant of the solvent. Solvents with low dielectric constants favored ion pair formation. From methanolic solutions containing the Li+, Na+, K+, and Cs+ salts of Cl- and ClO4-, it was determined that the cation with the highest selectivity for the ionophore affords the most ion pairing. A decrease in pH from 7 to 3 had no significant effect on the NMR line widths of chloride and perchlorate in methanolic solutions containing Val, whereas a similar decrease in pH in a methanolic solution containing Mon caused a 2-fold increase in the line widths. The FT-IR difference spectrum of KClO4 in a methanolic solution containing Val showed splitting at the perchlorate stretching frequency. No band splitting was observed in the FT-IR difference spectrum of KClO(4) in methanolic solutions containing Las. The efflux of 35Cl in LUVs containing the neutral ionophore Val followed first-order kinetics with an efflux constant of 1.70 x 10(-3) x min(-1), as determined by 35Cl NMR spectroscopy. The induction of increased membrane permeability in LUVs by the ionophore was determined to be negligible for Val and Nig by fluorescence spectroscopy.  相似文献   

12.
Novel aluminum(III)- and zirconium(IV)-tetraphenylporhyrin (TPP) derivatives are examined as fluoride-selective ionophores for preparing polymer membrane-based ion-selective electrodes (ISEs). The influence of t-butyl- or dichloro-phenyl ring substituents as well as the nature of the metal ion center (Al(III) versus Zr(IV)) on the anion complexation constants of TPP derivative ionophores are reported. The anion binding stability constants of the ionophores are characterized by the so-called “sandwich membrane” method. All of the metalloporphyrins examined form their strongest anion complexes with fluoride. The influence of plasticizer as well as the type of lipophilic ionic site additive and their amounts in the sensing membrane are discussed. It is shown that membrane electrodes formulated with the metalloporphyrin derivatives and appropriate anionic or cationic additives exhibit enhanced potentiometric response toward fluoride over all other anions tested. Since selectivity toward fluoride is enhanced in the presence of both anionic and cationic additives, the metalloporphyrins can function as either charged or neutral carriers within the organic membrane phase. In contrast to previously reported fluoride-selective polymeric membrane electrodes based on metalloporphyrins, nernstian or near-nernstian (−51.2 to −60.1 mV decade−1) as well as rapid (t < 80 s) and fully reversible potentiometric fluoride responses are observed. Moreover, use of aluminum(III)-t-butyltetraphenylporphyrin as the ionophore provides fluoride sensors with prolonged (7 months) functional lifetime.  相似文献   

13.
The potentiometric response characteristics with respect to salicylate anion of several membrane electrodes based on iron(III) tetraphenylporphyrin chloride (FeTPPCl) and derivatives with electrophilic and nucleophilic substituents, incorporated into plasticized polyvinylchloride (PVC) membranes were investigated. Complexes tetraphenyl porphyrin iron(III) chloride (FeTPPCl; A), tetrakis (4-methoxyphenyl) porphyrin iron(III) chloride (Fe(TOCH3PP)Cl; B), tetrakis (2,6-dichlorophenyl) porphyrin iron(III) chloride (Fe(TDClPP)Cl; C), tetrakis (4-nitrophenyl) porphyrin iron(III) chloride (Fe(TNO2PP)Cl; D), and tetrakis (pentafluorophenyl) porphyrin iron(III) chloride (Fe(TPFPP)Cl; E) were used as anion carriers in the membrane electrodes. The sensitivity, working range, detection limit, response mechanism, and selectivity of the membrane sensor toward interference shows a considerable dependence on the type of carrier substituent and the pH value of the sample solution. Potentiometric investigations in solutions of various pH show that the carrier complex containing fluoro substituents (E), which have very strong electron-accepting properties and a high ability to form hydrogen bonds, is capable of serving as a positively charged ionophore. Some other ionophores are capable of serving as both charged and neutral carriers under different conditions. The electrodes prepared in this work show super-Nernstian slopes with respect to salicylate concentration, which tend to a Nernstian response (slope near to -59 mV decade-1) upon an increase of the pH of the test solution. The results of UV/Vis absorption spectroscopy are used for interpretation of the formation of an oxene complex between salicylate and iron porphyrins.  相似文献   

14.
Walters JD  Hall EA 《The Analyst》2011,136(22):4718-4723
A hollow 3 μm sensing microcapsule containing chromoionophores within a 100 nm organosilica shell is reported. This shows a response to an ion step two orders of magnitude faster than 'filled' sensing particles of similar diameter. Incorporation of chromoionophores ETH 5294 and ETH 7061 in the capsule shell is shown with a t(90) response <2 s compared with >15 min for filled particles of similar diameters. This ultrafast geometry is also extended to dual ionophore dye incorporation and preliminary exploration of a FRET-based ratiometric method is examined to extend the pH response range, using a single excitation wavelength.  相似文献   

15.
The first nanometer scale anion sensing fluorescent spherical nanosensors, or PEBBLEs (probes encapsulated by biologically localized embedding) have been developed for the intracellular monitoring of chloride. The general scheme for the polymerization and introduction of sensing components creates a matrix that allows for the utilization of the highly selective ionophores used in poly(vinyl chloride) and poly(decyl methacrylate) ion-selective electrodes. We have demonstrated that our previously developed scheme for cation sensors can be utilized to tailoring selective submicron sensors for use in intracellular measurements of biologically relevant anions for which selective enough fluorescent probes do not exist. Three schemes were attempted for the development of chloride sensitive PEBBLEs. The first two used the Chloride ionophore indium(III) octaethylporphyrin chloride (In(OEP)Cl) (1) as an ionophore working in tandem with a chromoionophore and (2) as a chromoionophore with a peak shift generated by chloride mediated breaking of hydroxide ion-bridged porphyrin dimer. The third method used the optically silent Chloride ionophore III (ETH 9033) working in tandem with chromoionophore III (ETH 5350) to indirectly monitor Cl- activity by reporting the H+ coextracted into the matrix. Method 3 gave the most promising results, at a pH of 7.2 these PEBBLEs have a limit of detection of 0.2 mM Cl- with a linear dynamic range of 0.4 mM-190 mM Cl-. These PEBBLEs were delivered into C6 glioma cells, utilizing a gene gun, and intracellular chloride levels were monitored during ion-channel stimulation by kainic acid.  相似文献   

16.
Peper S  Gonczy C  Runde W 《Talanta》2005,67(4):713-717
A new strategy for improving the robustness of membrane-based ion-selective electrodes (ISEs) is introduced based on the incorporation of microsphere-immobilized ionophores into plasticized polymer membranes. As a model system, a Cs+-selective electrode was developed by doping ethylene glycol-functionalized cross-linked polystyrene microspheres (P-EG) into a plasticized poly(vinyl chloride) (PVC) matrix containing sodium tetrakis-[3,5-bis(trifluoromethyl)phenyl] borate (TFPB) as the ion exchanger. Electrodes were evaluated with respect to Cs+ in terms of sensitivity, selectivity, and dynamic response. ISEs containing P-EG and TFPB that were plasticized with 2-nitrophenyl octyl ether (NPOE) yielded a linear range from 10−1 to 10−5 M Cs+, a slope of 55.4 mV/decade, and a lower detection limit (log aCs) of −5.3. In addition, these membranes also demonstrated superior selectivity over Li+, Na+, and alkaline earth metal ion interferents when compared to analogous membranes plasticized with bis(2-ethylhexyl) sebacate (DOS) or membranes containing a lipophilic, mobile ethylene glycol derivative (ethylene glycol monooctadecyl ether (U-EG)) as ionophore.  相似文献   

17.
Cobalt(III) 5,10,15‐tris(4‐tert‐butylphenyl) corrole was synthesized and incorporated into plasticized poly(vinyl chloride) membranes and studied as a neutral carrier ionophore via potentiometry. This cobalt(III) complex has binding affinity to nitrite, and the resulting membrane electrode yields reversible and Nernstian response toward nitrite. Enhanced nitrite selectivity is observed over other anions, including lipophilic anions such as thiocyanate and perchlorate when an appropriate amount of lipophilic cationic sites are added to the membrane phase. Detection limit to nitrite is ca. 5 µM. Using tributylphosphate as the plasticizer with the cobalt(III) corrole species yields electrodes with enhanced nitrate selectivity.  相似文献   

18.
A comparative study of Pt(II)- and Pt(IV)-porphyrins as novel ionophores for anion-selective polymeric membrane electrodes is performed. Polymeric membranes of different compositions, prepared by varying plasticizers, cationic and anionic additives and Pt porphyrins, have been examined by potentiometric and optical techniques. Pt porphyrin-based devices were found to exhibit enhanced potentiometric selectivity toward iodide ion compared to electrodes based on a typical anion-exchanger (e.g. tridodecylmethylammonium chloride). It is shown that Pt(II)-porphyrins function as neutral anion carriers within the electrode membranes, while those based on Pt(IV)TPPCl(2) operate via a mixed mode carrier mechanism, evidencing also a partial reduction of the starting ionophore to Pt(II)TPP. Spectrophotometric measurements of thin polymeric films indicate that no spontaneous formation of hydroxide ion bridged porphyrin dimers occurs in the membrane plasticized both with high or low dielectric constant plasticizer, due to a low oxophilicity of central Pt. The computational study of various anion-Pt(IV)TPPCl(2) complex formation by means of semi-empirical and density functional theory (DFT) methods revealed a good correlation between calculated and measured ionophore selectivity.  相似文献   

19.
Shim JH  Jeong IS  Lee MH  Hong HP  On JH  Kim KS  Kim HS  Kim BH  Cha GS  Nam H 《Talanta》2004,63(1):61-71
Potentiometric properties of cholic and deoxycholic acid derivatives substituted with various ion-recognizing moieties, such as dithiocarbamate, bipyridyl, glycolic and malonic diamides, urea and thiourea, and trifluoroacetophenons (TFAP), have been studied using solvent polymeric membranes. The dithiocarbamate and bipyridyl group containing ionophores exhibit high silver ion selectivity. The cholic acid derivatized with glycolic diamides exhibited high calcium selectivity, but its complex formulation constant was 105 times smaller than that of ETH 1001. The reduced calcium binding ability of the glycolic diamide-substituted ionophore was advantageous for eliminating anionic interference. The bi- or tripodal malonic diamide-substituted ionophores exhibited substantially increased magnesium selectivity. Anion-selective ionophores have been designed by substituting urea and thiourea group containing chains to the hydroxyl linkers of chenodeoxycholic acid frames; their selectivity closely followed the sequence of Hoffmeister series, except the unusually large response of the thiourea-substituted ionophore to sulfate. The most successful examples of cholic or deoxycholic acid frame-based ionophores are those functionalized with two carbonate-selective TFAP groups: bipodal TFAP groups behaves like a tweezers for the incoming carbonate, and exhibit analytically interference free and quantitative responses to the carbonate in serum and seawater samples.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号