首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wünsch G 《Talanta》1979,26(2):177-179
The chelate is quantitatively formed only in the pH range 6.5-7.5. Despite the large stability constant, a large excess of reagent is required to suppress interferences. The most suitable wavelength for the photometric measurement is 500 nm, where the molar absorptivity is 1.607 x 10(4) 1.mole(-1). cm(-1). The procedure given allows determination of 8 x 10(-4)% Co in a l-g sample. The standard deviation for cobalt is 2.1 mug/100 ml (f = 19). Applications to analysis of iron and steel, nickel, copper, ores and silicates are given.  相似文献   

2.
Thanyarat Chuesaard 《Talanta》2009,79(4):1181-1187
An interfacing has been developed to connect a spectrophotometer with a personal computer and used as a readout system for development of a simple, rapid and sensitive reversed flow injection (rFI) procedure for chlorate determination. The method is based on the oxidation of indigo carmine by chlorate ions in an acidic solution (dil. HCl) leading to the decrease in absorbance at 610 nm. The decrease in absorbance is directly related to the chlorate concentration present in the sample solutions. Optimum conditions for chlorate were examined. A linear calibration graph over the range of 0.1-0.5 mg L−1 chlorate was established with the regression equation of Y = 104.5X + 1.0, r2 = 0.9961 (n = 6). The detection limit (3σ) of 0.03 mg L−1, the limit of quantitation (10σ) of 0.10 mg L−1 and the RSD of 3.2% for 0.3 mg L−1 chlorate (n = 11) together with a sample throughput of 92 h−1 were obtained. The recovery of the added chlorate in spiked water samples was 98.5 ± 3.1%. Major interferences for chlorate determination were found to be BrO3, ClO2, ClO and IO3 which were overcome by using SO32− (as Na2SO3) as masking agent. The method has been successfully applied for the determination of chlorate in spiked water samples with the minimum reagent consumption of 14.0 mL h−1. Good agreement between the proposed rFIA and the reference methods was found verified by Student's t-test at 95% confidence level.  相似文献   

3.
A flow injection (FI) system is described for the sequential determination of periodate and iodate based on their reaction with iodide at pH 3.5. Two sample plugs were injected into the same carrier stream sequentially. One injection is for the iodate determination and the other for the sum of iodate and periodate determination. For iodate determination, molybdate solution buffered at pH of 3.5 was used for selective masking of periodate. The influences of reagent concentrations were studied by a univariable method and the influence of FI manifolds was studied using univariable and simplex method. Periodate and iodate can be determined in the range of 0.050-5.0 and 0.050-10 microg/ml, respectively. The 3 sigma limit of detection was 0.030 and 0.050 microg/ml for periodate and iodate, respectively. The proposed method has been applied for the sequential determinations of periodate and iodate in water samples.  相似文献   

4.
Dawson MV  Lyle SJ 《Talanta》1990,37(4):443-446
Cobalt(II) in acetate-tartrate buffer (pH 6.0-7.3) is extracted quantitatively as cobalt(III) dithizonate with excess of dithizone in CCl(4). The molar absorptivity in the CCl(4) phase is 4.6 x 10(4) 1.mole(-1).cm(-1) at the absorption maximum 550 nm. The calibration graph is linear for 1-10 mug of cobalt in 10 ml of CCl(4) when excess of dithizone is removed by back-extraction with 0.01M aqueous ammonia. Most interferences can be overcome by (a) initial extraction with dithizone at pH 1.3, (b) selective back-extraction into hydrochloric acid (pH 1 to 2), (c) oxidation of iron and tin to iron(III) and tin(IV) and addition of fluoride to complex the former, and (d) selective reaction of nickel dithizonate with 1,10-phenanthroline in the CCl(4) phase followed by back-extraction of nickel into 0.1M acid. The method has been applied to determination of cobalt in a copper-nickel-zinc alloy and a nimonic alloy.  相似文献   

5.
Pedrazzi EM  Santelli RE 《Talanta》1993,40(4):551-555
A flow injection system is proposed for the spectrophotometric determination of copper in rocks. Samples are mineralized by treatment with hydrofluoric and perchloric acids and the solutions analysed after iron III precipitation. Copper is preconcentrated in a small CHELEX-100 resin column placed in the flow system, eluted with 2.5M nitric acid and further mixed with diethanoldithiocarbamate (DEDC) in basic medium. The coloured complex was monitored at 410 nm. With the proposed system, about 2-30 samples are run per hour with low reagent consumption. Beer's law is followed within 0.04 and 2.00, microg/ml. Precision and accuracy were assessed by using reference rock standards from USGS and GSJ with copper content as low as 0.4 microg/g with good precision and accuracy.  相似文献   

6.
Poachanee Norfun 《Talanta》2010,82(1):202-207
A reverse flow injection analysis (rFIA) spectrophotometric method has been developed for the determination of aluminium(III). The method was based on the reaction of Al(III), quercetin and cetyltrimethylammonium bromide (CTAB), yielding a yellow colored complex in an acetate buffer medium (pH 5.5) with absorption maximum at 428 nm. The rFIA parameters that influence the FIA peak height have been optimized in order to obtain the best sensitivity and minimum reagent consumption. A linear relationship between the relative peak height and Al(III) concentrations were obtained over the concentration range of 0.02-0.50 mg L−1 with a correlation coefficient of 0.9998. The limit of detection (LOD, defined as 3σ) and limit of quantification (LOQ, defined as 10σ) were 0.007 and 0.024 mg L−1, respectively. The repeatability was 1.10% (n = 11) for 0.2 mg L−1 Al(III). The proposed method was applied to the determination of Al(III) in tap water samples with a sampling rate of 60 h−1. Results obtained were in good agreement with those obtained by the official ICP-MS method at the 95% confidence level.  相似文献   

7.
Belcher R  Ghonaim SA  Townshend A 《Talanta》1974,21(3):191-198
Dimedone dioxime forms coloured complexes only with cobalt, nickel and copper ions in alkaline solution. Acidification and solvent extraction enables cobalt (1-50 mug) to be determined spectrophotometrically without interference. A specific spot test for cobalt is based on the same reaction.  相似文献   

8.
In this flow-injection method, the total concentration of calcium and magnesium is determined by using triethanolamine/hydrochloric acid buffer (pH 7.0) and chlorphosphonazo-III (CPA-III) in the flow streams, and the concentration of calcium alone is determined by using 1.6×10?3 M hydrochloric acid and CPA-III in the flow treams. At pH 7.0, medium, the linear calibration ranges were 0–2.00 mg l?1 for both calcium and magnesium and the detection limits were each 0.02 mg l?1; at pH 2.2, the linear calibration range for calcium and the detection limit were 0.20–2.00 mg l?1 and 0.1 mg l?1, respectively. Injection rates are 200 h. The method is suitable for analyzing natural waters.  相似文献   

9.
10.
11.
A new flow injection (FI) system for the determination of Pb(II) at trace level with a preconcentration step and spectrophotometric detection is proposed. It is based on preconcentration of lead ions on chitosan and dithizone-lead complex formation in aqueous medium (pH 9). The chemicals and FIA variables influencing the performance of the system were optimized and applied to the determination of lead in natural, well, and drinking water samples. It is a simple, highly sensitive, and low cost alternative methodology. The method provided a linear rage between 25 and 250 μg l−1, a detection limit of 5.0 ng ml−1 and a sample throughput of 15 h−1. The obtained results of spiked samples are in good agreement between the proposed method and ICP-AES.  相似文献   

12.
The flow injection principle is used in the photometric determination of nitrite and nitrate with sulfanilamide and N-(1-naphthyl)ethylenediamine as reagents. An on-line copper-coated cadmium reductor reduces nitrate to nitrite. The detection limit is 0.05 μM for nitrite and 0.1 mM for nitrate at a total sample volume of 200 μM. Up to 30 samples can be analyzed per hour with a relative precision of ca. 1%.  相似文献   

13.
A multisyringe flow injection analysis method for the determination of uranium in water samples was developed. The methodology was based on the complexation reaction of uranium with arsenazo (III) at pH 2.0. Uranium concentrations were spectrophotometrically detected at 649 nm using a light emitting diode. Under the optimized conditions, a linear dynamic range from 0.1 to 4.0 μg mL−1, a 3σ detection limit of 0.04 μg mL−1, and a 10σ quantification limit of 0.10 μg mL−1 were obtained. The reproducibility (%) at 0.5, 2.5, and 4.0 μg mL−1 was 2.5, 0.9, and 0.6%, respectively (n = 10). The interference effect of some ions was tested. The proposed method was successfully applied to the determination of uranium in water samples.  相似文献   

14.
Two new flow methods, flow injection analysis (FIA) and sequential injection analysis (SIA), for the spectrophotometric determination of Cu(II) in water at trace levels have been developed and optimised. Both methods are based on the reaction with oxalic acid bis(cyclohexylidene hydrazide) (cuprizone) in alkaline media. The two procedures have been developed for the final aim to compare their performances and to offer new rapid heavy metals analysis tools, avoiding the use of extraction steps. A detailed study of the physico-chemical parameters affecting the systems performances has been carried out. The reversed FIA and sandwich SIA approaches offered the best sensitivity. In both cases, an extremely good linearity has been obtained within the range 0.06-4 μg ml−1 (correlation coefficient r=0.9999), whereas the observed detection limits were 0.013 and 0.004 μg ml−1, for FIA and SIA, respectively. Furthermore, due to the great similarity of the diffusion zones in the reaction slugs, our approach offers the opportunity to compare the two methods in analogous conditions. This SIA method, besides keeping its typical reagent saving features, offered analytical performances equivalent to those of FIA. To obtain these results, an original “stop-flow like” method was successfully employed in the SIA approach. Both methods were validated by analysis of real water samples, after copper addition, and certified reference samples of fortified and waste waters.  相似文献   

15.
Holland WJ  Bozic J 《Talanta》1968,15(8):843-847
A rapid spectrophotometric method for the determination of low levels of cobalt(III) with 2,2 -dipyridyl ketoxime is proposed. A 3:1 water-soluble complex which is easily extractable into chloroform and has an absorption maximum at 388 mmicro forms instantaneously. Beer's law is obeyed and the molar absorptivity is 19.5 x 10(3). An investigation of the interference of 60 cations and anions shows the method to be widely applicable; it is simple, convenient and reproducible.  相似文献   

16.
A novel spectrophotometric assay method for batch and flow injection determination of sulfite in beverages is described. The method involves a reaction with diaquacobyrinic acid heptamethyl ester (diaquacobester, DACbs) in acetate buffer of pH 3 to form a highly stable sulfite cobester complex (SO3Cbs). In the absence of sulfite, the reagent displays three absorption maxima at 349, 409 and 525 nm. Addition of sulfite is associated with the development of a new absorption band at 313 nm, an increase in the intensity of the band at 425 nm and a decrease in the absorbance of the bands at 349 and 525 nm. Variations of the absorptions at 313, 349, 425 and 525 nm are linearly proportional to sulfite concentrations over the range of 0.05–25 μg ml−1with a detection limit of 0.01–0.2 μg ml−1. Negligible interferences are caused by most common ions. Validation of the method according to the quality assurance standards shows suitability for quality control assessment of sulfite in complex matrices without prior treatment. The method has the advantages of high selectivity, good sensitivity, fast reaction, high stability of the reagent and reaction product and absorbance measurements at four different wavelengths in the same run. The method is successfully applied to determine the sulfite contents of some beverages. The results compare fairly well with data obtained using the standard method.  相似文献   

17.
A flow system based on the multicommutation is proposed for fast and clean determination of cyclamate. The procedure exploits the reaction of cyclamate with nitrite in acidic medium and the spectrophotometric determination of the excess of nitrite by iodometry. The flow system was designed with a set of solenoid micro-pumps to minimize reagent consumption and waste generation. The detection limit was estimated as 30 μmol L−1 (99.7% confidence level) with linear response ranging up to 3.0 mmol L−1. The coefficient of variation was estimated as 1.7% for a solution containing 2.0 mmol L−1 cyclamate (n = 20). About 60 samples can be analyzed per hour, consuming only 3 mg KI and 1.3 μg NaNO2, and generating 2.0 mL of effluent per determination, thus providing an environmentally friendly alternative to previously proposed procedures. Common artificial and natural sweeteners did not interfere when present in concentrations 10-times higher than cyclamate. The procedure was successfully applied for determination of cyclamate in artificial table sweeteners with results in agreement with the reference method at the 95% confidence level.  相似文献   

18.
A new catalytic spectrophotometric method is reported for the simultaneous determination of nitrite and nitrate by flow injection analysis, based on the catalytic effect of nitrite on the redox reaction between pyrogallolsulfonephthalein and potassium bromate in acidic media. Nitrate can also be on-line reduced to nitrite with a modified copper-coated cadmium reduction column. The reaction was monitored spectrophotometrically by measuring the decrease in the absorbance of pyrogallolsulfonephthalein at 465 nm. Various analytical parameters such as effects of acidity, reagent concentrations, flow rates, sample sizes, lengths of the reaction coil and temperatures were studied and were optimized. Under the optimized conditions, the calibration graph was linear for 2.4 to 160 ng ml(-1) of nitrite and 4.0 to 100 ng ml(-1) of nitrate. The influences of potential interfering cations and anions for nitrite and nitrate determination were studied. The method is successfully applied for food and water samples. Up to ten samples can be analyzed per hour.  相似文献   

19.
Xie Z  Zhao J 《Talanta》2004,63(2):339-343
A very simple and sensitive reverse flow injection method is described for the determination of iodate and iodide. The iodate reacts with excess iodide in acidic medium to form tri-iodide, which can be spectrophotometrically monitored at 351 nm, and the absorbance is directly related to the concentration of iodate in the sample. The determination of iodide is based on oxidizing iodide to iodate. The calibration curve is linear in the range of 0.02-3.0 μg ml−1 I with r2=0.9998, and the limit of detection is 0.008 μg ml−1 I. The chemical and flow injection variables were studied and optimized to make the procedure suitable for quantitating iodate and iodide in table salts. It is shown that the reverse flow injection analysis could greatly improve the sensitivity and precision for determination of iodate with a relative standard deviation of 0.9%. A complete analysis, including sampling and washing, could be performed in 35 s. The procedure was applied successfully to the determination of iodate and iodide in table salts, and the results were statistically compared with results determined by standard iodometry method.  相似文献   

20.
Murti MV  Khopkar SM 《Talanta》1976,23(3):246-248
Thiobenzoylacetone in benzene is used for the extraction and spectrophotometric determination of cobalt at pH 8.4-9.1. The orange-yellow complex is measured at 460 nm. The system conforms to Beer's law over the range 0.20-4.58 microg ml of extract. The colour of the complex is stable for at least 144 hr. Cobalt(II) is quantitatively extracted and determined in the presence of 200:1 (w w ratios) of various ions. The method is made selective by using common sequestering agents such as thiourea or fluoride or by selective extraction with mesityl oxide, tributylphosphate and acetylacetone. It is possible to determine cobalt in the presence of nickel by simultaneous spectrophotometry. The method is rapid, simple, selective and sensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号