首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new chemiluminescence (CL) method for the selective determination of As(III) and As(V) ions in aqueous solution has been studied using a FIA system. The method is based on the increased CL intensity with the addition of As(V) ion into a solution of lucigenin and hydrogen peroxide. The addition of As(III) ion into the solution did not change the CL intensity. Total concentration of As ions was determined after pre-oxidation of As(III) to As(V) with hydrogen peroxide in basic solution. The As(III) content was estimated by subtracting the content of As(V) ion from total As concentration. The effects of concentrations of KOH and H2O2, and flow rates of reagents on CL intensity have been investigated. The calibration curve for As(V) ion was linear over the range from 1.0×10-2 to 10 μg/g, the coefficient of correlation was 0.997 and the detection limit was 5.0×10-3 μg/g under the optimal experimental conditions.  相似文献   

2.
A simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V). The flow injection system was operated in the merging zones configuration, where sample and NaBH4 are simultaneously injected into two carrier streams, HCl and H2O, respectively. Sample and reagent injected volumes were of 250 μl and flow rate of 3.6 ml min−1 for hydrochloric acid and de-ionised water. The NaBH4 concentration was maintained at 0.1% (w/v), it would be possible to perform arsine selective generation from As(III) and on-line arsine generation with 3.0% (w/v) NaBH4 to obtain total arsenic concentration. As(V) was calculated as the difference between total As and As(III). Both procedures were tolerant to potential interference. So, interference such as Fe(III), Cu(II), Ni(II), Sb(III), Sn(II) and Se(IV) could, at an As(III) level of 0.1 mg l−1, be tolerated at a weight excess of 5000, 5000, 500, 100, 10 and 5 times, respectively. With the proposed procedure, detection limits of 0.3 ng ml−1 for As(III) and 0.5 ng ml−1 for As(V) were achieved. The relative standard deviations were of 2.3% for 0.1 mg l−1 As(III) and 2.0% for 0.1 mg l−1 As(V). A sampling rate of about 120 determinations per hour was achieved, requiring 30 ml of NaBH4 and waste generation in order of 450 ml. The method was shown to be satisfactory for determination of traces arsenic in water samples. The assay of a certified drinking water sample was 81.7±1.7 μg l−1 (certified value 80.0±0.5 μg l−1).  相似文献   

3.
A flow-injection system with electrochemical hydride generation and atomic absorption detection for As(III)/As(V) determination is described. A simple electrolytic flow-through cell has been developed and optimized. Several cathode materials like Pt, Ag, Cu, C and Pb have been tested. The influence of the electrolysis current, concentration of sulfuric acid, carrier stream, flow rate, sample volume and interferences by other metals on the arsenichydride generation have been studied. For the determination of total inorganic arsenic, As(V) is reduced to As(III) on-line by postassium iodide or L-cysteine at 95 degrees C. The influence of the temperature and the reduction medium on this pre-reduction step has been tested. The calibration curve is linear in the range of 5 to 50 microg/L for As(III) and total inorganic arsenic and shows a higher sensitivity than in case of reduction with sodium tetrahydroborate. The detection limit is 0.4 microg/L for As(III) and 0.5 microg/L for total inorganic arsenic at a sample volume of 1 mL.  相似文献   

4.
A method has been described for the successive polarographic determination of As(III) and As(V)in a sulphuric acid solution.A directly recorded polarogram shows a limiting current corresponding to the As(III) concentration, another polarogram, recorded with a second sample after reduction of As(V) to As(III) by hydrazine sulphate, gives a limiting current corresponding to the concentration As(II) + As(V).  相似文献   

5.
Afkhami A  Madrakian T  Assl AA 《Talanta》2001,55(1):55-60
A simple, sensitive, rapid and reliable method has been developed for spectrophotometric determinations of As(III) in the presence of As(V) based on its inhibition effect on the redox reaction between bromate and hydrochloric acid. The decolorization of methyl orange by the reaction products was used to monitor the reaction spectrophotometrically at 525 nm. The method allows the determination of arsenic in the range of 6-1000 mug l(-1). The relative standard deviation for 10 determinations of 40 mug l(-1) of As(III) was 1.43% and the limit of detection, corresponding to a signal to noise ratio of three, was 3.4 mug l(-1). The proposed method was applied to the determination of As(III) in water samples with satisfactory results.  相似文献   

6.
Dai X  Compton RG 《The Analyst》2006,131(4):516-521
The electrochemical detection of As(III) was investigated on a platinum nanoparticle modified glassy carbon electrode in 1 M aqueous HClO4. Platinum nanoparticle modified glassy carbon electrodes were prepared by potential cycling in 0.1 M aqueous KCl containing 1 mM K2PtCl6. In each potential cycle, the potential was held at + 0.5 V for 0.01 s and at -0.7 V for 10 s. 25 cycles were optimally used to prepare the electrodes. The resulting electrode surfaces were characterized with AFM. The response to arsenic(III) on the modified electrode was examined using cyclic voltammetry and linear sweep voltammetry. By using the As(III) oxidation peak for the analytical determination, there is no interference from Cu(II) if present in contrast to the other metal surfaces (especially gold) typically used for the detection of arsenic; Cu(II) precludes the use of the As(0) to As(III) peak for quantitative anodic stripping voltammetry measurements due to the formation of Cu3As2 and an overlapping interference peak from the stripping of Cu(0). After optimization, a LOD of 2.1 +/- 0.05 ppb was obtained using the direct oxidation of As(III) to As(V), while the World Health Organization's guideline value of arsenic for drinking water is 10 ppb, suggesting the method may have practical utility.  相似文献   

7.
Lopez A  Torralba R  Palacios MA  Camara C 《Talanta》1992,39(10):1343-1348
It is shown that the potassium iodide to the samples to reduce As(V) to AS(III) is not essential when total inorganic arsenic is determined by molecular spectrophotometry (trapping AsH(3) in Ag-DDTC) or by atomic-absorption spectrometry (if Ar flow-rate and NaBH(4) addition rate are controlled in 6M hydrochloric acid medium). Furthermore, in the presence of low concentration of organic arsenic, a method is reported for the selective determination of inorganic As(III) and As(V), based on the use of citrate/citric acid medium to determine As(III) and hydrochloric acid to determine total inorganic As. As(V) is determined by the difference between total inorganic As and As(III). The interference level of organic arsenic species (monomethylarsenic acid and dimethylarsenic acid) in the determination of total inorganic arsenic and AS(III) in 6M hydrochloric acid and citrate/citric acid medium respectively, is reported in the text. The developed method is applied to determine As(III) and As(V) in spiked, tap and waste waters and in lake sediments.  相似文献   

8.
Differentiation between As(III) and As(V) is accomplished using earlier developed selective preconcentration methods (carbamate and molybdate mediated (co)precipitation of As(III) and As(V) respectively) follewed by AAS detection of the (co)precipitates. Apart from this, separation of methylated arsenic species is performed by an automatable system comprising a continuous flow hydride generation unit in which monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) are converted into their corresponding volatile methylarsines, monomethylarsine (MMA) and dimethylarsine (DMA) respectively. These species are cryogenically trapped in a Teflon-line stainless stell U-tube packed with a gas chromatographic solid-phase and subsequently separated by selective volatilization. A novel gas drying technique by means of a Perma Pure dryer was applied successfully prior to trapping. Detection is by atomic absorption spectrometry (AAS). MMAA and DMAA are determined with absolute limits of detection of 0.2 and 0.5 ng, respectively. Investigation of the behaviour of the methylarsines in the system was conducted with synthesized73As labeled methylated arsenic species. It was found that MMA is taken through the system quantitatively whereas DMA is recovered for about 85%. The opumized system combined with selective As(III)/As(V) preconcentration has been tested out for arsenic speciation of sediment interstitial water from the Chemiehaven at Rotterdam. The obtained concentrations are 28.5, 26.8 and 0.60 ng·ml–1 for As(III), As(V) and MMAA, respectively, whereas the DMAA concentration was below 0.16 ng·ml–1.  相似文献   

9.
A flow-injection system with electrochemical hydride generation and atomic absorption detection for As(III)/As(V) determination is described. A simple electrolytic flow-through cell has been developed and optimized. Several cathode materials like Pt, Ag, Cu, C and Pb have been tested. The influence of the electrolysis current, concentration of sulfuric acid, carrier stream, flow rate, sample volume and interferences by other metals on the arsenichydride generation have been studied. For the determination of total inorganic arsenic, As(V) is reduced to As(III) on-line by postassium iodide or L-cysteine at 95° C. The influence of the temperature and the reduction medium on this pre-reduction step has been tested. The calibration curve is linear in the range of 5 to 50 g/L for As(III) and total inorganic arsenic and shows a higher sensitivity than in case of reduction with sodium tetrahydroborate. The detection limit is 0.4 g/L for As(III) and 0.5 g/L for total inorganic arsenic at a sample volume of 1 mL.  相似文献   

10.
Jesus JP  Suárez CA  Ferreira JR  Giné MF 《Talanta》2011,85(3):1364-1368
An analytical procedure for multiple standard additions of arsenic species using sequential injection analysis (SIA) is proposed for their quantification in seafood extracts. SIA presented flexibility for generating multiple specie standards at the ng mL−1 concentration level by adding different volumes of As(III), As(V), monomethylarsonic (MMA) and dimethylarsinic (DMA) to the sample. The mixed sample plus standard solutions were delivered from SIA to fill the HPLC injection loop. Subsequently, As species were separated by HPLC and analyzed by atomic fluorescence spectrometry (AFS). The proposed system comprised two independently controlled modules, with the HPLC loop acting as the intermediary device. The analytical frequency was enhanced by combining the actions of both modules. While the added sample was flowing through the chromatographic column towards the detection system, the SIA program started performing the standard additions to another sample. The proposed method was applied to spoiled seafood extracts. Detection limits based on 3σ for As(III), As(V), MMA and DMA were 0.023, 0.39, 0.45 and 1.0 ng mL−1, respectively.  相似文献   

11.
Arsenic (As) is a toxic trace element that occurs naturally in groundwater and soils. Understanding the reactions of arsenite (As(III)) and arsenate (As(V)) with soil and mineral surfaces is critical for predicting the fate and transport of As in the environment and developing better ways to remediate As-contaminated areas. This investigation uses X-ray absorption near edge spectroscopy (XANES) to evaluate the solid phase oxidation state and mineral surface binding sites in three agricultural soil samples from California, USA by fitting linear combinations of XANES spectra derived from several synthetic and well characterized As(III)- and As(V)-treated model compounds (Fe and Al metal hydroxides and aluminosilicate illite clay mineral). The results suggest that As(III) is either partially or completely oxidized to As(V) when reacted with soil in an aqueous, batch reaction. The As(III)-treated Aiken soil was composed of 60% As(III) attached to surfaces similar to lepidocrocite (γ-FeOOH)) and 40% As(V) attached to aluminosilicate (illite). The Fallbrook soil completely oxidized As(III) and the product was As(V) adsorbed on Al hydroxide (gibbsite, γ-Al(OH)3) (62%), illite (16%), and lepidocrocite (γ-FeOOH) (22%). The reaction of As(III) with Wyo soil resulted in 42% As(III) adsorbed on surface similar to goethite and 58% As(V) adsorbed on lepidocrocite. Arsenic(V) adsorption on soil resulted in stable As(V) surface complexes that were well described by XANES spectra from As(V) adsorption complexes on gibbsite, illite, and lepidocrocite.  相似文献   

12.
The removal properties of As(III) and As(V) by the several metal oxides having different mineral type and content of metals were investigated in batch and column reactors. The used metal oxides were Fe-oxide loaded sand (ILS), Mn-oxide loaded sand (MLS), activated alumina (AA), sericite (SC) and iron sand (IS). From the pH-edge adsorption experiments with AA and ILS, maximum As(III) adsorption was observed around neutral pH while As(V) adsorption was followed an anionic-type behavior. Among five metal oxides, AA showed the greatest removal capacity for both As(III) and As(V) through adsoption process but it has little oxidation capacity for As(III). Eventhough IS had much greater content of Fe-oxides than ILS, it showed a relatively lower removal capacity for both As(III) and As(V). This result suggests that adsorption of arsenic onto metal oxides is controlled by not only the contents of Fe-oxides but also mineral type of Fe-oxides. Column tests were performed at different combinations of metal oxides in a column reactor to find the best column system, which effectively treat both As(III) and As(V) at the same time. Among several combinations, the column reactors packed with MLS-AA and MLS-ILS showed a near complete oxidation of As(III) by MLS for a long time and the greatest adsorption of total arsenic compared to the column reactor packed with MLS-IS.  相似文献   

13.
Hydrazine (HZ) and sodium borohydride (BH) are commonly used reagents for the production of palladium nanoparticles (PdNP) in aqueous solution and also for the reduction of arsenic from higher oxidation state to lower oxidation state. A methodology based on the quantitative adsorption of reduced arsenic species on PdNP generated in situ by BH and HZ is described to characterize As (V) and As (III) in environmental water samples. It was observed that PdNP obtained by BH gave quantitative recovery of As (V) and (III) and the PdNP obtained by HZ could account for As (III). The reduced palladium particles are collected and dissolved in minimum amount of nitric acid. The quantification of arsenic was carried out using GFAAS. Optimization of the experimental conditions and instrumental parameters were investigated in detail. The proposed procedure was validated by applying it for the determination of the content of total As in Certified Reference Material BND 301-02 (NPL, India). The detection limit of arsenic in environmental water samples was 0.029 μg L−1 with an enrichment factor of 50. The relative standard deviation (R.S.D.) for 10 replicate measurements of 5 μg mL−1 was 4.2%. The proposed method was successfully applied for the determination of sub ppm to ppm levels of arsenic (V), (III) in environmental water samples.  相似文献   

14.
This paper reports on the behavior of arsenite [As(III)] and arsenate [As(V)] in some water samples at storage under several conditions (pH=2/natural pH, 4°C/20°C). The investigation was carried out using73As as a radiotracer for both forms and with the aid of earlier developed simple speciation methods for differentiation between arsenite and arsenate. Although arsenate is the thermodynamically stable arsenic form, it was observed that arsenate in deionized water is completely converted to the trivalent state; this phenomenon took place in about one week. By monitoring the radioactive As(III) and As(V) over a period of one month in two natural water samples, a fresh water and a sea water sample, it could be concluded that no adsorption occurs on the surface of polyethylene containers, independent of storage conditions. During that period, storage at natural pH values results for both water samples in a gradual oxidation of As(III); the oxidation rate is higher for storage at 20°C. At pH=2 As(III) is fairly stable in fresh water at both storage temperatures. However, in sea water a fast oxidation of As(III) is observed (complete oxidation within 3 d at both temperatures). As(V) is stable at all storage conditions studied.  相似文献   

15.
Ficklin WH 《Talanta》1983,30(5):371-373
The predominant species of arsenic in ground water are probably arsenite and arsenate. These can be separated with a strong anion-exchange resin (Dowex 1 x 8; 100-200 mesh, acetate form) in a 10 cm x 7 mm column. Samples are filtered and acidified with concentrated hydrochloric acid (1 ml per 100 ml of sample) at the sample site. Five ml of the acidified sample are used for the separation. At this acidity, As(III) passes through the acetate-form resin, and As(V) is retained. As(V) is eluted by passage of 0.12M hydrochloric acid through the column (resulting in conversion of the resin back into the chloride form). Samples are collected in 5-ml portions up to a total of 20 ml. The arsenic concentration in each portion is determined by graphite-furnace atomic-absorption spectrophotometry. The first two fractions give the As(III) concentration and the last two the As(V) concentration. The detection limit for the concentration of each species is 1 mug l .  相似文献   

16.
A method was developed for the determination of arsenite [As(III)] and arsenate [As(V)] in water samples using flow injection online sorption coupled with hydride generation atomic fluorescence spectrometry (HG-AFS) using a cigarette filter as the sorbent. Selective determination of As(III) was achieved through online formation and retention of the pyrrolidine dithiocarbamate arsenic complex on the cigarette filter, but As(V) which did not form complexes was discarded. After reducing As(V) to As(III) using L-cysteine, total arsenic was determined by HG-AFS. The concentration of As(V) was calculated by the difference between As(III) and total arsenic. The analytes were eluted from the sorbent using 1.68 mol L?1 HCl. With consumption of 22 mL of the sample solution, the enrichment factor of As(III) was 25.6. The detection limits (3σ/k) and the relative standard deviation for 11 replicate determinations of 1.0 ng mL?1 As(III) were found to be 7.4 pg mL?1 and 2.6%, respectively.  相似文献   

17.
In this work, we present the application of an exfoliated graphite electrode modified with gold nanoparticles (AuNPs) for the detection of As(III) in acidic media. Gold nanoparticles were deposited on the surface of an exfoliated graphite electrode by electrodeposition at a potential window of ?0.2 V to 1.2 V. This was followed by activation in 0.5 M H2SO4 with 10 cycles from 0.6 V to 1.4 V. The modification of exfoliated graphite (EG) showed an increased electroactive surface area of the electrode and improved peak current output in a Fe(CN)63?/4? redox probe. EG‐AuNPs electrode was used to detect As(III) in 1.0 M HNO3 using square wave anodic stripping voltammetry (SWASV) technique at optimum conditions of pH 3, deposition potential of ?0.8 V, deposition time of 180 s, frequency of 5 Hz and pulse amplitude of 50 mV. The EG‐AuNPs electrode detected As(III) in solution to a limit of 0.58 ppb with regression of 0.9993. The method reported is simple, cheap and possesses good reproducibility. The developed electrochemical sensor was applied in the detection of As (III) in an industrial real water sample. The results of the real water sample analysis from the developed method are comparable with the inductively coupled plasma – optical emission spectroscopy (ICP‐OES) results.  相似文献   

18.
E. Castro 《Talanta》2007,71(1):51-55
Ultraviolet irradiation (photolysis) in alkaline medium was applied for pretreatment of seawater samples so as to accurately determine total As by continuous-flow hydride generation-atomic fluorescence spectrometry. This sample pretreatment is meant to convert non-reducible As forms into inorganic As, which easily forms arsine. The optimised parameters were the treatment time and the pH of the medium. The behaviour of four hydride-reactive As species [As(III), As(V), MMA, DMA], and AsB, i.e. a typical non-hydride-reactive As species, when subjected to UV irradiation was studied. UV irradiation at pH 1 lead to conversion of all species into As(V) with the exception of AsB and DMA. Conversions of DMA and AsB into As(V) at pH 11 in less than 30 min were observed under UV irradiation. The limit of detection of As (measured as As(V)) by hydride generation-atomic fluorescence spectrometry was 0.1 μg/L and the repeatability of the oxidation procedure was about 10%. The method was applied to determination of total and directly reducible As at 11 sampling points of the Galician Coast (Atlantic Ocean, Spain). Total As concentrations were in the range 1.4-4.8 μg/L. A significant As fraction, between 20 and 44%, depending on the sampling point, corresponded to non-reducible As which was converted by UV irradiation into hydride-reactive As. This fraction should represent the sum of DMA, which yields a low sensitivity in the continuous flow-AFS system, and the hidden As fraction.  相似文献   

19.
The stability of arsenic species (arsenate [As(V)], monomethylarsonate [MMA], dimethylarsinate [DMA] and arsenite [As(III)]) in two types of urban wastewater samples (raw and treated) was evaluated. Water samples containing a mixture of the different arsenic species were stored in the absence of light at three different temperatures: +4 degrees C, +20 degrees C and +40 degrees C. At regular time intervals, arsenic species were determined by high performance liquid chromatography (HPLC)-hydride generation (HG)-atomic fluorescence spectrometry (AFS). The experimental conditions for the separation of arsenic species by HPLC and their determination by AFS were directly optimised from wastewater samples. As(III), As(V), MMA and DMA were separated on an anion exchange column using phosphate buffer (pH 6.0) as the mobile phase. Under these conditions the four arsenic species were separated in less than 10 min. The detection limits were 0.6, 0.9, 0.9 and 1.8 micro g L(-1) for As(III), DMA, MMA and As(V), respectively. As(V), MMA and DMA were found stable in the two types of urban wastewater samples over the 4-month period at the three different temperatures tested, while the concentration of As(III) in raw wastewater sample decreased after 2 weeks of storage. A greater stability of As(III) was found in the treated urban wastewater sample. As(III) remained unaltered in this matrix at pH 7.27 over the period studied, while at lower pH (1.6) losses of As(III) were detected after 1 month of storage. The results show that the decrease in As(III) concentration with time was accompanied by an increase in As(V) concentration.  相似文献   

20.
To avoid changes in the original As species distribution in natural water after sampling, a method of immediate separation of As(V) by anion exchange at the sampling site was developed. The procedure consists of two steps. The total concentration of arsenic is determined in one part of the water sample acidified on site. Another part of the water samples is pressed through a column filled with an anion exchanger. The As(III) species that is not redox-stable remains in the effluent of the sorbents column and can be analyzed with conventional methods after stabilization by addition of conc. HNO3. As(V) is sorbed by the exchanger material. The As(V) concentration can be calculated as the difference between Assol and As(III), neglecting very low contents of methylated species. Oxidation of Fe(II) by air followed by co-precipitation of arsenic with iron hydroxide was applied in field experiments to minimize the As concentration in seepage and mining water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号