首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amount of chemiluminescence (CL) or light that is emitted from human polymorphonuclear leukocytes (PMN) during phagocytosis or activation by soluble stimuli is dependent on the emission of photons from the oxidation of particulate or bystander molecules. Because the compounds luminol and lucigenin yield photons with high quantum efficiency these agents have been introduced to sensitively assess PMN-CL. Since there is limited information about the pathways involved in the chemiluminescence of these compounds, we investigated the role of both myeloperoxidase (MPO) and superoxide anion (· O2?) in luminol-and lucigenin-PMN-CL. We compared the CL between normal and MPO- deficient PMN using zymosan for phagocytosis and N-formylmethionyleucylphenylalanine (FMLP) as a soluble stimulus. Our data demonstrated that luminol-CL was dependent on the presence of MPO and independent of · O2? generation during phagocytosis but independent of MPO during FMLP activation. In contrast lucigenin-CL was independent of MPO during both phagocytosis and FMLP activation and appeared to reflect · O2? production. Consequently, dependent on the type of activation, it appears that luminol- and lucigenin-CL are generated via different oxidative pathways and may serve as potentially useful tools to differentiate the redox activity of phagocytic cells.  相似文献   

2.
Phagocytosis by inflammatory cells is an essential step and a part of innate immunity for protection against foreign pathogens, microorganism or dead cells. Phagocytosis, endocytotic events sequel to binding particle ligands to the specific receptors on phagocyte cell surface such as Fcgamma recptor (FcgammaR), complement receptor (CR), beta-glucan receptor, and phosphatidylserine (PS) receptor, require actin assembly, pseudopod extension and phagosome closure. Rho GTPases (RhoA, Cdc42, and Rac1) are critically involved in these processes. Abrupt superoxide formation, called as oxidative burst, occurs through NADPH oxidase complex in leukocytes following phagocytosis. NADPH oxidase complex is composed of membrane proteins, p22PHOX and gp91PHOX, and cytosolic proteins, p40PHOX, p47PHOX and p67PHOX. The cytosolic subunits and Rac-GTP are translocated to the membrane, forming complete NADPH oxidase complex with membrane part subunits. Binding of imunoglobulin G (IgG)- and complement-opsonized particles to FcgammaR and CR of leukocytes induces apoptosis of the cells, which may be due to oxidative burst and accompanying cytochrome c release and casapase-3 activation.  相似文献   

3.
Neutrophils, also known as polymorphonuclear leukocytes (PMN), are the most common type of white blood cells, comprising about 50-70% of all white blood cells. In the event of inflammatory processes, neutrophils display increased mobility, tissue influx ability, prolonged life span, and an increased phagocytic capacity, constituting the initial participants in the cellular defense of the organism. One of the most important defense systems of neutrophils corresponds to their ability to mediate a strong oxidative burst through the formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). While oxidative burst is important for the elimination of invading microorganisms, the overproduction of ROS and RNS or the impairment of endogenous antioxidant defenses may result to detrimental effects to the host. The nature and the extent of ROS and RNS production by neutrophils in response to different stimuli is, consequently, a matter of extensive research, with scientific reports showing an enormous variability on the detection methodologies employed. This review attempts to provide a critical assessment of the most common approaches to identify and quantify reactive species formed during the neutrophils’ oxidative burst. The detection mechanisms and performance, as well as advantages and limitations of the different methodologies, are scrutinized, focusing on the use of fluorimetric, chemiluminometric and colorimetric probes.  相似文献   

4.
Bacterial-derived formylated peptide, (FMLP) stimulates the respiratory burst activity of human neutrophils via phospholipase C (PLC) activation followed by increased production of second messengers, IP3 and DG(1). One synthetic bisphosphonate, clodronate was tested to see how it might affect Ca2+-mediated activation of the neutrophil respiratory burst. Clodronate itself did not significantly change the respiratory burst, measured by Luminol-dependent chemiluminescence (CL). However, clodronate inhibited the FMLP-mediated stimulation of CL significantly (p<0.001). A selective inhibitor of PLC, quinacrine, alone inhibited CL significantly (p<0.0001) but with clodronate the inhibition was potentiated. The sensitivity to EGTA-treatment with clodronate indicated that clodronate is a Ca2+ mobilizing agent. Furthermore, clodronate-mediated CL was sensitive (p<0.001) to inhibitors of protein kinase C or tyrosine kinase and potentiated with vanadate treatment. Data suggests possible involvement of bisphosphonate in regulating phospholipase C activity in human neutrophils, probably via Ca2+-mediated phosphorylation of the subunit of PLC.  相似文献   

5.
Experimental evidence have been suggesting that the toxicity of metals may involve inflammatory processes, with subsequent sustained overproduction of pro-oxidant reactive species, leading to indirect toxic effects, namely genotoxicity. Neutrophils, as important mediators of the innate defence systems, may have a hitherto not known role on these metal-induced adverse effects. Thus, the aim of the present study was to evaluate the putative activation of human neutrophils' oxidative burst by two groups of metals, the first group being able to undergo redox-cycling reactions (iron, copper, chromium and cobalt), whilst the primary route for the toxicity of the second group is not dependent on redox reactions (mercury and cadmium). The generation of reactive oxygen species (ROS) by metal-stimulated neutrophils was measured using the chemiluminometric probe luminol. Appropriate scavengers and metabolizing enzymes were subsequently used to identify the reactive species produced. The modulatory effects of metals on phorbol myristate acetate (PMA)-activated neutrophils were also studied. To evaluate the contribution of protein kinase C (PKC) on metal stimulatory effect, we used the specific inhibitor of PKC Gö6983. The obtained results showed that, in the present experimental conditions, only Cd (II) has the ability to stimulate the production of superoxide radical (O2), hydrogen peroxide (H2O2), and hypochlorous acid (HOCl) in isolated human neutrophils. The same metal showed a synergistic effect with PMA. It was also demonstrated that Cd (II) induces neutrophils' oxidative burst mainly via activation of PKC, precluding a significant contribution of other cellular pathways for ROS generation mediated by this metal. These observations indicate that the sustained activation of human neutrophils may contribute for the long term adverse effects on human health mediated by Cd (II).  相似文献   

6.
植物细胞活性氧爆发在植物的抗病以及信号转导中起着非常重要的作用,植物内活性氧产生及代谢受到复杂而精确的机制调控,从而维持正常的活性氧水平以发挥其生理功能. 然而,在单细胞水平开展活性氧爆发实时监测及其调控机制研究一直受到很大的挑战. 本文以碳纤维微盘电极(CFMDE)为基底电极,利用Nafion的模板效应,采用电化学沉积法制得纳米铂颗粒修饰电极(NPt/Nafion/ CFMDE);同时采用基于聚二甲基硅氧烷(PDMS)的软光刻技术,制备了一种高效固定植物悬浮细胞的琼脂糖阵列微孔芯片. 使用NPt/Nafion/CFMDE实时监测了单个拟南芥原生质体活性氧爆发,并证明电化学监测活性氧的主要成分为过氧化氢. 在此基础上,采用浅层培养法培养原生质体再生植物细胞壁. 电化学监测结果表明,与单个原生质体相比,植物细胞在受到刺激时释放的过氧化氢量显著降低;然而当采用过氧化物酶抑制剂抑制植物细胞壁上过氧化物酶活性后,植物细胞释放过氧化氢量显著回升. 研究结果表明细胞壁在活性氧爆发过程具有很好的调控功能,可望促进植物细胞活性氧爆发及其调控机制的研究.  相似文献   

7.
Label‐free logic gates (AND, OR, and INHIBIT) based on chemiluminescence (CL) as new optical readout signal have been developed by taking advantage of the unique CL activity of luminol‐ and lucigenin‐functionalized gold nanoparticles/graphene oxide (luminol‐lucigenin/AuNPs/GO) nanocomposites. It was found that Fe2+ ions could induce the CL emission of luminol‐lucigenin/AuNPs/GO nanocomposites in alkaline solution. On this basis, by using Fe2+ ions and NaOH as the inputs and the CL signal as the output, an AND logic gate was fabricated. When the initial reaction system contained luminol‐lucigenin/AuNPs/GO nanocomposites and NaOH, either Fe2+ ions or Ag+ ions could react with the luminol‐lucigenin/AuNPs/GO nanocomposites to produce a strong CL emission. This result was used to design an OR logic gate using Fe2+ ions and Ag+ ions as the inputs and CL signal as the output. Moreover, two INHIBIT logic gates for Fe2+ and Ag+ were also developed using by NaClO and L ‐cysteine as their CL inhibitors, respectively. Furthermore, the proposed logic gates were successfully used to detect Fe2+, Ag+, and L ‐cysteine, respectively. The developed logic gates may find future applications in sensing, clinical diagnostics, and environmental monitoring.  相似文献   

8.
Small-vessel vasculitis (SVV) is the inflammation of the vessel wall that can result in hemorrhage and/or ischemia. Among the histological findings in SVV are increased infiltrating neutrophils, which, due to their oxidative burst and myeloperoxidase activity, release excessive reactive oxygen species, triggering a chain reaction of lipid peroxidation and yielding reactive aldehydes such as acrolein. The implication of oxidative stress in the pathogenesis of SVV was studied, focusing on acrolein immunohistochemistry in the affected skin vessels and systemic stress response. Samples from SVV patients and healthy subjects were collected and analyzed for total serum peroxides, total antioxidant capacity, inflammatory and immunological parameters, as well as for the presence of acrolein–protein adducts in the skin tissue specimens. The obtained data showed that systemic redox homeostasis and iron metabolism are altered in SVV patients. Possible biomarkers in the evaluation of oxidative status, disease activity and prevalence were indicated. Furthermore, a strong correlation between the accumulation of acrolein–protein adducts in the skin and the progression of the disease was revealed. Thus, the results of this study demonstrate that SVV is not only associated with systemic oxidative stress but also with tissue-specific oxidative stress that promotes acrolein formation and protein modification correlating with the severity of cutaneous vasculitis.  相似文献   

9.
Systemic lupus erythematosus (SLE) is an autoimmune disease with heterogeneous organ and system manifestations. In this study, urinary metabolic alterations related to SLE were investigated by performing gas chromatography/mass spectrometry (GC/MS) based metabolomics and multivariate statistical analysis. Patients with SLE and healthy controls could be clearly differentiated in view of the metabolic abnormity in urine. Among 70 identified endogenous metabolites, 23 metabolites were dramatically increased in SLE patients, which involved in several key metabolic pathways including energy metabolism, nucleotide metabolism, oxidative stress and gut‐microbiome‐derived metabolism. This noninvasive and GC/MS‐based metabolomic technique is a promising and potent strategy for identifying novel biomarkers and understanding pathogenesis of SLE. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Multifunctional hybrid: A dendritic platinum nanoparticle/lucigenin/reduced graphene oxide (RGO) hybrid with chemiluminescence (CL) activity was prepared for the first time by using lucigenin as a linker through simultaneous reduction of H(2) PtCl(4) and a lucigenin-functionalized graphene oxide composite by sodium borohydride (see scheme). The hybrid may have potential applications as a CL sensor, in catalysis, energy conversion, and opto-electronic systems.  相似文献   

11.
Conjugated linoleic acid (CLA) was covalently immobilized onto cellulose acetate (CA) membranes. The effects of CLA immobilization on the blood coagulation, platelet aggregation, and oxidative stress were evaluated using human blood. The resulting CLA grafting CA membranes were characterized with X-ray photoelectronic spectroscopy (XPS). The complete blood count (CBC) and coagulation time (CT) was evaluated in vitro for the hemocompatibility. Human serum albumin (HSA) and human plasma fibrinogen (HPF) was evaluated for the protein affinity. The production of reactive oxygen species (ROS) was measured by chemiluminescence (CL) method to evaluate the oxidative stress. The results showed that the CLA-immobilizing CA membrane could keep the CBC values more stable than unmodified CA membrane. The CLA-immobilized CA membranes also showed longer CT and less adsorption of plasma proteins. CLA-immobilized CA membrane could keep the CL counts of hydrogen peroxide and superoxide values more stable than unmodified CA membrane. These results suggest that a CLA-immobilized CA membrane could offer protection for patients against oxidative stress and would be helpful for reducing the dosage of anticoagulant during hemodialysis.  相似文献   

12.
13.
It was found that lucigenin alkaline solution could react with hydrazine in the presence of Pt nanoparticles to generate strong chemiluminescence (CL) centered at 480 nm. In order to explore the CL mechanism, UV–visible spectra, X-ray photoelectron spectra studies before and after the CL reaction were carried out. The effects of O2 and superoxide dismutase (SOD) on the CL reaction were examined. The catalytic effect of Pt NPs on the hydrazine–O2 reaction was studied. A possible mechanism is proposed to be due to that Pt NPs catalyzed the reaction between hydrazine and the dissolved oxygen under alkaline conditions to yield hydroperoxide species and superoxide radical anion, which further oxidized lucigenin to produce CL emission. Moreover, the effects of some organic compounds containing hydroxyl (OH), carboxyl (COOH), carbonyl (CO), amino (NH2), or sulfur groups on the lucigenin–hydrazine–Pt NPs CL system were tested. Thiol-containing compounds such as cysteine (Cys), glutathione (GSH), homocysteine (Hcy), and 6-mercaptopurine (6-MP) were observed to greatly enhance the CL intensity. It is suggested that the CL enhancement might be due to the fact that thiol-containing compounds could facilitate the electron transfer process under the catalysis of Pt nanoparticles and accelerate the generation of OH and O2? radicals, leading to the strong CL.  相似文献   

14.
15.
Airway inflammation is the main pathophysiological feature of patients with chronic obstructive pulmonary disease (COPD). Interleukin-8 (IL-8) is a potent chemoattractant for neutrophils and eosinophils. Increased IL-8 levels were observed in bronchoalveolar lavage (BAL) and induced sputum in patients with COPD. To evaluate the role of the IL-8 gene, we genotyped blood samples of 122 COPD-patients and 385 healthy controls for a known polymorphism in the promoter region (-251 A/T) of the IL-8 gene. Additionally, we screened the coding region for further polymorphisms by SSCP analyses. Comparison of the allele and genotype frequencies among each group revealed no significant differences between patients and controls. Although IL-8 plays an important role in the chemotaxis of inflammatory cells, the polymorphisms investigated here do not seem to be involved in the genetic predisposition to COPD.  相似文献   

16.
To select candidate genes, we attempted to comparative analysis of protein levels between rheumatoid arthritis (RA) patients and healthy controls by two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF-MS). We identified 17 proteins that showed up- or down-regulated spots in RA patients. We found that coactosin-like1 (COTL1) were highly expressed in RA patients compared with healthy controls. We performed a case-control study to determine whether the COTL1 gene polymorphisms were associated with RA and systemic lupus erythematosus (SLE). The genotype frequency of c.-1124G>T and the allelic frequency of c.484G>A in RA patients, and the genotype frequency of c.484G>A in SLE patients were significantly different from healthy controls (P = 0.009, 0.027, and 0.025, respectively). We also investigated the correlation with the levels of rheumatoid factor (RF) and anti-cyclic citrullinated peptide (CCP) antibody in RA patients, and anti-nuclear antibodies (ANA) in SLE patients. The c.484G>A polymorphism in RA patients has significant association with the levels of anti-CCP antibody (P = 0.03). Our findings demonstrated that c.-1124G>T and c.484G>A polymorphisms of the COTL1 gene might be associated with the genetic susceptibility of autoimmune disorders.  相似文献   

17.
A flow-injection analysis (FIA) for the determination of dopamine has been developed. The method is based on the inhibition effect of dopamine on the iron(II)-induced chemiluminescence (CL) of 10,10'-dimethyl-9,9'-biacridinium dinitrate (lucigenin). The presence of a non-ionic surfactant, polyoxyethylene (23) lauryl ether (Brij 35), caused an increase in the inhibition effect. The present method allows the determination of dopamine over the range 1x10(-8)-2x10(-7) mol dm(-3). The relative standard deviation was 0.7% for eight determinations of 6x10(-8) mol dm(-3) dopamine. The detection limit (S/N=3) was 2x10(-9) mol dm(-3) with the sampling rate of 40 samples h(-1). The effect of other catecholamines and compounds of similar structure on the lucigenin CL reaction was studied: quinone, hydroquinone, norepinephrine, pyrocatechol and l-dopa suppressed the CL intensity.  相似文献   

18.
液相色谱化学发光检测法的新进展   总被引:4,自引:0,他引:4  
武竟存  章竹君 《分析化学》1994,22(4):396-405
本文评述了近年来液相色谱化学发光检测法的新进展,内容涉及各类化学发光发反应,生物发光反应和电致化学发光反应同色谱体系的偶合方式,仪器设计,多种无机,有机,生物大分子和生物活性物质的分析方法及其在环境,生物医学科学和生命科学中的应用和发展方向。引用文献168篇。  相似文献   

19.
流动注射化学发光检测法的进展   总被引:11,自引:0,他引:11  
周延秀  朱果逸 《分析化学》1997,25(2):222-230
评述近年来流动注射化学发光检测法及生物发光检测法的最新进展。内容涉及各类化学发光反应、生物发光和电致化学发光反应同流主射体系的耦合方式,仪器设计,多种无机、有机、生物大分子、生物活性的药物的分析方法及其在环境、生物医学客生命科学、化学及药物化学中的应用和发展方向。  相似文献   

20.
Polyacrylonitrile (PAN) membrane was hydrolyzed with NaOH(aq) and grafted with conjugated linoleic acid (CLA) via esterification with 1,3‐propanediol. The resulting CLA grafted PAN membranes were characterized using Fourier transform infrared spectrometry (FT‐IR) and X‐ray photoelectronic spectroscopy (XPS). The effects of CLA grafting on the blood coagulation, platelet aggregation, and oxidative stress were evaluated using human blood. The complete blood count (CBC) and coagulation time (CT) was evaluated in vitro for hemocompatibility. After CLA grafting, the proliferation of human umbilical vein endothelial cells (HUVECs) on the membranes were improved. In addition, the production of reactive oxygen species (ROS) was measured by the chemiluminescence (CL) method to evaluate the oxidative stress. The results showed that the CLA‐grafted PAN membrane could keep the CBC values more stable than unmodified PAN membrane. The CLA‐grafted PAN membranes also showed longer CT. CLA‐grafted PAN membrane could keep the CL counts of hydrogen peroxide and superoxide values more stable than unmodified PAN membrane. These results suggest that a CLA‐grafted PAN membrane could offer protection for patients against oxidative stress and would be helpful for reducing the dosage of anticoagulant during hemodialysis. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号