The construction and general performance characteristics of three piezoelectric quartz crystal sensors responsive to the pentoxyverine are described here. This kind of non-potentiometric sensing method is based on use of ion-pair complexes of the pentoxyverine cation with three counter anions, namely, tungstophosphate, tetraphenylborate and picrolonate. The complexes were embedded in a PVC matrix. Adsorption of the pentoxyverine ion on the complex caused a frequency decrease of the crystal. The frequency decrease was proportional to the amount of adsorbed analyte. The influencing factors were investigated in detail, and then optimized. The proposed sensors exhibit reasonable selectivity and a higher sensitivity than the potentiometric sensors. For a sensor modified with pentoxyverine-phosphotungstate, the calibration graph was linear over concentration of 1.0 x 10(-7) - 5.0 x 10(-5) M with a detection limit of 6 x 10(-8) M at pH 5.4. 相似文献
In this article, an electrochemical sensor based on a gold nanocage (AuNC)‐modified carbon ionic liquid electrode (CILE) was fabricated and applied to the sensitive rutin determination. The presence of AuNCs on the electrode surface greatly improved the electrochemical performance of the working electrode due to its specific microstructure and high metal conductivity. Electrochemical behavior of rutin on AuNCs/CILE was studied using cyclic voltammetry and differential pulse voltammetry with the related electrochemical parameters calculated. Under the optimal experimental conditions, the oxidation peak current of rutin and its concentration had good linear relationship in the range from 4.0 × 10?9 to 7.0 × 10?4 mol/L with a low detection limit of 1.33 × 10?9 mol/L (3σ). This fabricated AuNCs/CILE was applied to direct detection of the rutin concentration in drug samples with satisfactory results, showing the real application of AuNCs in the field of chemically modified electrodes. 相似文献
A reagent phase that responds to sodium ion is used in a sodium-selective fiber-optic sensor. The components of the reagent phase are the ammonium salt of 8-anilino-1- naphthalenesulfonic acid (ANS), copper(II)—polyethyleneimine, and a commercial sodium-selective ionophore [N,N′,N″-triheptyl-N,N′,N″-trimethyl-4,4′,4″-propylidyne- tris(3-oxabutyramide)] immobilized on silica. In the absence of sodium, the ANS binds to the copper(II) polyelectrolyte and fluorescence is quenched. When sodium (20– 200 mM) is added, it forms a cationic complex which forms ion-pairs with some of the ANS, causing it to fluoresce. Response is linear at the lower sodium concentrations but tends to curve toward the concentration axis at higher concentrations. The sensitivity and the range of linear response depend on ANS concentration. Typically, it takes 1–3 min to reach 90% of steady-state response. The response time increases with decreasing temperature, increasing amounts of immobilized ionophore, and higher sodium concentrations. The selectivity of the sensor is established by the selectivity of the ionophore. 相似文献
We report on the sensitive determination of glucose using a glassy carbon electrode modified with CuO nanowires and a Nafion film. The structure and morphology of CuO nanowires were established by scanning electron microscopy and X-ray diffraction. The electrochemical performance of the modified electrode was investigated by cyclic voltammetry and chronoamperometry. Compared to a bare glassy carbon electrode, a substantial increase in efficiency of the electrocatalytic oxidation of glucose can be observed. The new glucose sensor displays two useful linear ranges of response towards glucose, is not affected by commonly interfering species, and displays a detection limit as small as 45?nM. The response time is <2?s towards 0.5?mM of glucose. Additional features include high electrocatalytic activity, high sensitivity, excellent selectivity, and good stability.
We present an enzyme-free glucose sensor using a glassy carbon electrode modified with CuO wires and a Nafion film. A substantial increase in efficiency of the electrocatalytic oxidation of glucose can be observed. The new sensor displays two useful linear ranges of response towards glucose and displays a detection limit as small as 45?nM. The response time is <2?s towards 0.5?mM of glucose. 相似文献
Glassy carbon electrodes modified with a plasticized PVC membrane including tetradodecyl ammonium nitrate (TDAN) and two different plasticizers [bis(2-etheylhexyl) sebacate (DOS) and dibutyl phthalate (DBP)]. TDAN is a quaternary ammonium salt, used in nitrate-selective field-effect transistor membrane, and it is applied as an ionophore for sensor development. Membranes were prepared as sensing matrix for nitrate detection through the intensity of its reduction peak using cyclic voltammetry. Under optimum conditions, the detection limits of nitrate obtained with TDAN + DOS and TDAN + DBP, are 10–6 mol/dm3 and 10–9 mol/dm3, respectively. As a result, the developed sensors based on TDAN + DOS and TDAN + DBP matrices demonstrate satisfactory quantified amounts in determination of nitrate in water where the measured values were less than 0.57 × 10–7 mol/dm3 and 0.73 × 10–10 mol/dm3, respectively. 相似文献
We describe a highly sensitive and selective amperometric sensor for the determination of nitrite. A glassy carbon electrode was modified with a composite made from gold nanoparticles (AuNPs) and sulfonated graphene (SG). The modified electrode displays excellent electrocatalytic activity in terms of nitrite oxidation by giving much higher peak currents (at even lower oxidation overpotential) than those found for the bare electrode, the AuNPs-modified electrode, and the SG-modified electrode. The sensor has a linear response in the 10 μM to 3.96 mM concentration range, a very good detection sensitivity (45.44 μA mM?1), and a lower detection limit of 0.2 μM of nitrite. Most common ions and many environmental organic pollutants do not interfere. The sensor was successfully applied to the determination of nitrite in water samples, and the results were found to be consistent with the values obtained by spectrophotometry.
Figure
A highly sensitive amperometric sensor for nitrite using a glassy carbon electrode modified with gold nanoparticles/sulfonated graphene (AuNPs/SG) composites is presented 相似文献
A sensor for detecting dimethyl ether was designed based on the cataluminescence phenomenon when dimethyl ether vapors were passing through the surface of the ceramic heater. The proposed sensor showed high sensitivity and selectivity to dimethyl ether at an optimal temperature of 279 °C. Quantitative analysis were performed at a wavelength of 425 nm, the flow rate of carrier air is around 300 mL/min. The linear range of the cataluminescence intensity versus concentration of dimethyl ether is 100-6.0 × 103 ppm with a detection limit of 80 ppm. The sensor response time is 2.5 s. Under the optimized conditions, none or only very low levels of interference were observed while the foreign substances such as benzene, formaldehyde, ammonia, methanol, ethanol, acetaldehyde, acetic acid, acrolein, isopropyl ether, ethyl acetate, glycol ether and 2-methoxyethanol were passing through the sensor. Since the sensor does not need to prepare and fix up the granular catalyst, the simple technology reduces cost, improves stability and extends life span. The method can be applied to facilitate detection of dimethyl ether in the air. The possible mechanism of cataluminescence from the oxidation of dimethyl ether on the surface of ceramic heater was discussed based on the reaction products. 相似文献
A sensitive nicotine sensor based on a molecularly imprinted electropolymer of o-aminophenol is proposed and its configuration
and performance are studied in detail. On the condition of weak acidity, the sensitive layer was prepared by electropolymerization
of o-aminophenol on a gold electrode in the presence of the template (nicotine). The sensor exhibits good selectivity and
sensitivity to nicotine. The determination limit is 2.0×10−7 mol/L and a linear relationship between the current and concentration is found in the range of 4.0×10−7 ∼ 3.3 ×10−5 mol/L. The sensor has also been applied to the analysis of nicotine in tobacco samples with recovery rates ranging from 99.0%
to 102%.
__________
Translated from Journal of Hunan university (Nature Science), 2005, 32(3) (in Chinese) 相似文献
We report on a carbon paste electrode that was modified with a binuclear manganese(II) complex by the drop-coating method. A study on the mechanism of the electro-oxidation of tryptophan (Trp) at this electrode indicated that it enables Trp to be determined with good sensitivity and selectivity. Second-order derivative linear sweep voltammetry at pH 4.1 revealed that a sensitive anodic peak appears at 812?mV (vs. SCE) whose current is proportional to the concentration of Trp in the concentration range from 0.1 to 1.0???mol?L?1 and 1.0 to 80???mol?L?1, with a detection limit (S/N?=?3) of 0.08???mol?L?1 (60?s of accumulation). The method was applied to the determination of Trp in amino acid injection solutions with satisfactory results.
Figure
The electrochemical behavior of tryptophan at a carbon paste electrode modified with a binuclear manganese(II) complex Mn2(phen)2(p-MBA)4(H2O) was investigated. The modified electrode showed high electrocatalytic activity toward the oxidation of tryptophan and the peak current increases linearly with tryptophan concentration in the range of 0.1 to 80???mol L?1. 相似文献
This work describes the electrochemical behavior of copper(II)-bis[5-((4-n-decyloxyphenyl)azo)-N-(nethanol)-salicylaldiminato]film immobilized on the surface of multiwall carbon nanotube glassy carbon electrode and its electrocatalytic activity toward the oxidation of L-cysteine. The surface structure and composition of the sensor was characterized by scanning electron microscopy. Electrocatalytic oxidation of L-cysteine on the surface of modified electrode was investigated with cyclic voltammetry, chronoamperometry and hydrodynamic amperometery methods and the results showed that the Cu-Schiff base film displays excellent electrochemical catalytic activities towards L-cysteine oxidation. The modified electrode indicated reproducible behavior and high level of stability during the electrochemical experiments. 相似文献
采用水热法合成了纳米氧化锌-氧化石墨烯复合材料,并基于该复合材料构制了一种新型双酚A传感器,研究了该传感器的电化学行为。结果表明,在含8.0×10-5mol/L CTAB的p H 7.0磷酸盐缓冲液中,双酚A在0.573V处出现1个不可逆的氧化峰,具有良好的电化学响应;其氧化峰电流与浓度在1.0×10-8~4.0×10-5mol/L范围内呈良好的线性关系,检出限为5.0×10-9mol/L;对模拟环境水样中双酚A进行3次平行测定的回收率在96.3%~101.9%之间,相对误差在1.2%~3.8%范围内。该传感器具有灵敏度高、线性范围宽的特点。 相似文献
Shuttle-like copper oxide (CuO) was prepared by a hydrothermal decomposition process. The resulting material was characterized by scanning electron microscopy and X-ray diffraction. It was then immobilized on the surface of a glassy carbon electrode modified with a film of poly(thionine). A pair of well-defined and reversible redox peaks for Hg(II) was observed with the resulting electrode in pH 7.0 solutions. The anodic and cathodic peak potentials occurred at 0.260 V and 0.220 V (vs. Ag/AgCl), respectively. The modified electrode displayed excellent amperometric response to Hg(II), with a linear range from 40 nM to 5.0 mM and a detection limit of 8.5 nM at a signal-to-noise ratio of 3. The sensor exhibited high selectivity and reproducibility and was successfully applied to the determination of Hg(II) in water samples. 相似文献
A highly sensitive and selective glucose biosensor has been constructed by using highly dispersed NiO nanoparticles supported on well-aligned MWCNTs (NiO/MWCNTs) as sensing interface. The NiO/MWCNTs nanocomposite was synthesized by magnetron sputtering deposition of NiO nanoparticles on vertically aligned carbon nanotubes. The nanocomposite electrode showed high electrochemical activity towards the oxidation of glucose in 0.20 M NaOH solution. At an applied potential of +0.50 V, it gives a fast response time (< 5 s) and a linear dependence (R?=?0.997) on the glucose concentration up to 7.0 mM with an extraordinarily high sensitivity of 1.77 mA mM-1 cm-2 and a detection limit of 2 μM. The interference by the oxidation of common interfering species such as ascorbic acid, dopamine, uric acid, lactose, and fructose is effectively avoided. The electrode was used to analyze glucose concentration in human serum samples. It allows highly sensitive, stable, and fast amperometric sensing of glucose, which is promising for the development of nonenzymatic glucose sensors. 相似文献
Fabrication of multicomponent nanocomposites as electrode-modified materials is an effective strategy to design highly active electrochemical sensors. Here, we present a facile strategy to fabricate the palladium phthalocyanine-multiwalled carbon nanotube (PdPc-MWCNTs) nanocomposite for the sensitive detection of rutin. Results showed that the prepared nanocomposites exhibited excellent electrocatalytic activity toward rutin due to the synergetic effects of PdPc and MWCNTs (excellent electric conductivity and catalytic activity) and the homogeneous dispersibility of Nafion. Under the optimized conditions, the developed sensor exhibited a linear response range from 0.10 to 51 μM for rutin with a low detectable limit of 75 nM and a fast response less than 3.0 s. The proposed method might offer a possibility for electrochemical analysis of rutin in Chinese medical analysis or serum monitoring owing to its low cost, simplicity, high sensitivity, good stability, and few interferences against common coexisting ions in real samples. 相似文献
We are presenting a sensor for hydrogen peroxide (H2O2) that is based on the use of a heterostructure composed of Pt nanoparticles (NPs) and carbon nanofibers (CNFs). High-density Pt NPs were homogeneously loaded onto a three-dimensional nanostructured CNF matrix and then deposited in a glassy carbon electrode (GCE). The resulting sensor synergizes the advantages of the conducting CNFs and the nanoparticle catalyst. The porous structure of the CNFs also favor the high-density immobilization of the NPs and the diffusion of water-soluble molecules, and thus assists the rapid catalytic oxidation of H2O2. If operated at a working voltage of −0.2 V (vs. Ag/AgCl), the modified GCE exhibits a linear response to H2O2 in the 5 μM to 15 mM concentration range (total analytical range: 5 μM to 100 mM), with a detection limit of 1.7 μM (at a signal-to-noise ratio of 3). The modified GCE is not interfered by species such as uric acid and glucose. Its good stability, high selectivity and good reproducibility make this electrode a valuable tool for inexpensive amperometric sensing of H2O2.
In this communication, a hydrogen peroxide (H2O2) sensor based on self-assembled Prussian Blue (PB) modified electrode was reported. Thin film of PB was deposited on the electrode by self-assembly process including multiple sequential adsorption of ferric ions and hexacyanoferrate ions. The as-prepared PB modified electrode displayed sufficient stability for practical sensing application. At an applied potential of ?0.05 V vs. Ag/AgCl (sat. KCl), PB modified electrode with 30 layers exhibited a linear dependence on H2O2 concentration in the range of 1 × 10?6–4 × 10?4 M (r = 0.9998) with a sensitivity of 625 mA M?1 cm?2. It was found that the sensitivity of H2O2 sensors could be well controlled by adjusting the number of deposition cycles for PB preparation. This work demonstrates the feasibility of self-assembled PB modified electrode in sensing application, and provides an effective approach to control the sensitivity of PB-based amperometric biosensors. 相似文献
The electrolytic sensor described is based on the oxidation of nitrite at a platinum electrode modified with chemisorbed iodine and coated with a thin layer of quaternized poly(4-vinylpyridine), qPVP. The sealed sensor uses an anion-exchange membrane to separate Donnan transport of nitrite across the membrane and controlled potential electrolysis at the Pt/qPVP indicator electrode. The sensor has a linear response to nitrate concentration in aqueous samples over the range 4 × 10?6?2 × 10?3 M nitrite. The detection limit is 2 × 10?6 M nitrite. The sensor is free of interference by nitrate, dissolved oxygen, cations, and many neutral species. Anions that are electroactive at 0.7 V vs. Ag/ AgCl would interfere, but they are uncommon in most samples. Initial tests with lake water samples suggest that this sensor is unaffected by this matrix. The system was also evaluated for monitoring nitrite levels in spiked meat extracts. 相似文献
Xanthine (Xa) determination is of considerable importance in clinical analysis and food quality control. Therefore, a sensitive nonenzymatic amperometric sensor for Xa based on carbon nanofibers (CNFs) has been proposed. The CNFs, which were prepared by electrospinning technique and subsequent thermal treatment, were used to modify carbon paste electrode (CNF-CPE) to construct the amperometric sensor device without any oxidation pretreatment. In application to Xa electrochemical determination, the CNF-CPE exhibited high electrocatalytic activity and fast amperometric response. Various experimental parameters, such as pH and applied potential were optimized. Under the optimal conditions, the dynamic linear range of Xa was 0.03-21.19 μM (R = 0.9992) with the detection limit low to 20 nM (S/N = 3). With good selectivity and sensitivity, the present system was successfully applied to estimate the freshness of fish and determine Xa in human urine, which provides potential application in food quality control and clinical analysis. 相似文献