首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

A sensitive and simple separation-enrichment technique for the determination of trace amounts of Cu(II), Co(II), Cd(II), Fe(III) and Mn(II) was described. Metal ions were complexed with 1-nitroso-2-naphthol at pH 9. Following solid-phase extraction on Diaion HP-20 resin, metals were determined by flame atomic absorption spectrometry. The effect of the matrix ions were investigated. The recoveries of metal ions were greater than 95%. The detection limits of the analyte ions ( k = 3, N = 21) were varying 0.18 µg/l for Cd(II) to 0.44 µg/l for Fe(III). The method was applied to a stream sediment standard reference material (GBW7309), some ammonium salts and industrial fertilizer samples for the determination of copper, cobalt, cadmium, iron and manganese. The relative standard deviations (RSD) of the determinations for analyte ions at µg/g levels varied from 1 to 10%.  相似文献   

2.
Candir S  Narin I  Soylak M 《Talanta》2008,77(1):289-293
A cloud point extraction (CPE) procedure has been developed for the determination trace amounts of Cr(III), Pb(II), Cu(II), Ni(II), Bi(III), and Cd(II) ions by using flame atomic absorption spectrometry. The proposed cloud point extraction method was based on cloud point extraction of analyte metal ions without ligand using Tween 80 as surfactant. The surfactant-rich phase was dissolved with 1.0 mL 1.0 mol L−1 HNO3 in methanol to decrease the viscosity. The analytical parameters were investigated such as pH, surfactant concentration, incubation temperature, and sample volume, etc. Accuracy of method was checked analysis by reference material and spiked samples. Developed method was applied to several matrices such as water, food and pharmaceutical samples. The detection limits of proposed method were calculated 2.8, 7.2, 0.4, 1.1, 0.8 and 1.7 μg L−1 for Cr(III), Pb(II), Cu(II), Ni(II), Bi(III), and Cd(II), respectively.  相似文献   

3.
4.
A membrane filtration procedure for the preconcentration and atomic absorption spectrometric determination of Pb(II), Co(II) and Fe(III) ions in natural water samples has been established. Cellulose nitrate membrane filters (0.45 μm and 47 mm diameter) were used in all experiments. The procedure is based on chelate formation of the analyte metals with 1‐(2‐pyridylazo) 2‐naphtol (PAN) and on retention of the chelates on cellulose nitrate membrane filter. The cellulose nitrate membrane and analyte ions were completely dissolved by 500 μL of nitric acid at 85 °C on a hood and then metal determinations were performed by flame atomic absorption spectrometry. The method was applied to natural water samples for the determination of analyte ions with satisfactory results, e.g., recoveries > 95%, RSD's < 10%.  相似文献   

5.
Silica gel-bound amines phase modified with p-dimethylaminobenzaldehyde (p-DMABD) was prepared based on chemical immobilization technique. The product (SG-p-DMABD) was used as an adsorbent for the solid-phase extraction (SPE) Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The uptake behaviors of SG-p-DMABD for extracting these metal ions were studied using batch and column procedures. For the batch method, the optimum pH range for Cr(III) and Ni(II) extraction was ≥ 3, for Cu(II), Pb(II) and Zn(II) extraction it was ≥ 4. For simultaneous enrichment and determination of all the metals on the newly designed adsorbent, the pH value if 4.0 was selected. All the metal ions can be desorbed with 2.0 mL of 0.5 mol L− 1 of HCl. The results indicate that SG-p-DMABD has rapid adsorption kinetics using the batch method. The adsorption capacity for these metal ions is in the range of 0.40-1.15 mmol g− 1, with a high enrichment factor of 125. The presence of commonly coexisting ions does not affect the sorption capacities. The detection limits of the method were found to be 1.10, 0.69, 0.99, 1.10 and 6.50 μg L− 1 for Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was 5.0% (n = 8) for all metal ions. The method was applied to the preconcentration of Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) from the certified reference material (GBW 08301, river sediment) and water samples with satisfactory results.  相似文献   

6.
Goswami A  Singh AK 《Talanta》2002,58(4):669-678
A new chelating matrix has been prepared by immobilizing 1,8-dihydroxyanthraquinone (DHAQ) on silica gel modified with (3-aminopropyl)triethoxysilane. After characterizing the matrix with thermogravimetric analysis (TGA), cross polarization magic angle spinning (CPMAS) NMR and diffuse reflectance infrared fourier transformation (DRIFT) spectroscopy, it has been used to preconcentrate Pb(II), Cd(II) and Zn(II) prior to their determination by flame atomic absorption spectrometry. The optimum pH ranges for quantitative sorption are 6.0-7.5, 7.0-8.0 and 6.0-8.0 for Pb, Zn, and Cd, respectively. All the metal ions can be desorbed with 2 mol l(-1) HCl/HNO(3). The sorption capacity of the matrix has been found to be 76.0, 180.0 and 70.2 mumol g(-1) for Pb, Zn and Cd, respectively, with the preconcentration factor of approximately 200. The limits upto which electrolytes NaNO(3), NaCl, NaBr, Na(2)SO(4), Na(3)PO(4) sodium citrate, EDTA, glycine and humic acid and cations Ca(II), Mg(II), Cu(II), Co(II), Ni(II), Mn(II) Al(III), Cr(III) and Fe(III) can co-exist with the metal ions during their sorption without any adverse effect are reported. The lowest concentration of metal ions for quantitative recovery is 5.0 ng ml(-1) The simultaneous enrichment and determination of all the metals is possible if total load of metal ions is less than sorption capacity. The flame AAS was used to determine these metal ions in underground, tap and river water samples (relative standard deviation (R.S.D.)相似文献   

7.
A simultaneous preconcentration procedure for the determination of Cd(II), Ni(II), Co(II) and Cu(II) by atomic absorption spectrometry is described. The method is based on solid phase extraction of the metal ions on dithizone loaded on naphthalene in a mini-column, elution with nitric acid and determination by flame atomic absorption spectrometry. The sorption conditions including NaOH concentration, sample volume and the amount of dithizone were optimized in order to attain the highest sensitivity. The calibration graph was linear in the range of 0.5–75.0 ng ml?1 for Cd(II), 1.0–150.0 ng ml?1 for Ni(II), 1.0–150.0 ng ml?1 for Co(II) and 1.0–125.0 ng ml?1 for Cu(II) in the initial solution. The limit of detection based on 3Sb was 0.13, 0.32, 0.33 and 0.43 ng ml?1 for Cd(II), Ni(II), Co(II) and Cu(II), respectively. The relative standard deviations (R.S.D) for ten replicate measurements of 20 ng ml?1of Cd(II), 100 ng ml?1 of Ni(II), Co(II) and 75 ng ml?1 of Cu(II) were 3.46, 2.43, 2.45 and 3.26%, respectively. The method was applied to the determination of Cd(II), Ni(II), Co(II) and Cu(II) in black tea, tap and river water samples.  相似文献   

8.
A coprecipitation method has been developed for the determination of Cr(III), Mn(II), Fe(III), Co(II), Cu(II), Cd(II) and Pb(II) ions in aqueous samples by flame atomic absorption spectrometry (FAAS) with the combination of pyridine, nickel(II) as a carrier element and potassium thiocyanate as an auxiliary complexing agent. The obtained coprecipitates were dissolved with nitric acid and measured by FAAS. The coprecipitation conditions, such as the effect of the pH, amounts of nickel, pyridine and potassium thiocyanate, sample volume, and the standing time of the precipitate formation were examined in detail. It was found that the metal ions studied were quantitatively coprecipitated with tetrakis(pyridine)-nickel(II)bis(thiocyanate) precipitate (TP-Ni-BT) in the pH range of 9.0 - 10.5. The reliability of the results was evaluated by recovery tests, using synthetic seawater solutions spiked with the analyte metal ions. The obtained recoveries ranged from 96 to 101% for all of the metal ions investigated. The proposed method was validated by analyses of two certified reference materials (NIST SRM 2711 Montana soil and HPS Certified Waste Water Trace Metals Lot #D532205). It was also successfully applied to seawater and dialysis solution samples. The detection limits (n = 25, 3s) were in the range of 0.01-2.44 microg l(-1) for the studied elements and the relative standard deviations were < or =6%, which indicated that this method could fully satisfy the requirements for analysis of such samples as seawater and dialysis solution having high salt contents.  相似文献   

9.
The present article reports the application of Thiosemicarbazide‐modified multiwalled carbon nanotubes (MWCNTs‐TSC) as a new, easily prepared selective and stable solid sorbent for the preconcentration of trace Co(II), Cd(II), Cu(II) and Zn(II) ions in aqueous solution prior to the determination by flame atomic absorption spectrometry. The studied metal ions can be adsorbed quantitatively on MMWNTs at pH 5.0 and then eluted completely with HNO3 (1.5 mol L?1) prior to their determination by flame atomic absorption spectrometry. The separation/preconcentration conditions of analytes were investigated, including the pH, the sample flow rate and volume, the elution condition and the interfering ions. The maximum adsorption capacity of the adsorbent at optimum conditions were found to be 32.5, 27.3, 44.5 and 34.1 mg g?1 for Co(II), Cd(II), Cu(II) and Zn(II), and the detection limits of the method were found to be 0.28, 0.13, 0.21 and 0.17 μg L?1, respectively. The proposed method was successfully applied for extraction and determination of the analytes in well water, sea water, wastewater, soil, and blood samples.  相似文献   

10.
Baytak S  Türker AR 《Talanta》2005,65(4):938-945
A microorganism Agrobacterium tumefacients as an immobilized cell on a solid support was presented as a new biosorbent for the enrichment of Fe(III), Co(II), Mn(II) and Cr(III) prior to flame atomic absorption spectrometric analysis. Amberlite XAD-4 was used as a support material for column preconcentration. Various parameters such as pH, amount of adsorbent, eluent type and volume, flow rate of sample solution, volume of sample solution and matrix interference effect on the retention of the metal ions have been studied. The optimum pH for the sorption of above mentioned metal ions were about 6, 8, 8 and 6, respectively. The loading capacity of adsorbent for Co(II) and Mn(II) were found to be 29 and 22 μmol g−1, respectively. The recoveries of Fe(III), Co(II), Mn(II) and Cr(III), under the optimum conditions were found to be 99 ± 3, 99 ± 2, 98 ± 3 and 98 ± 3%, respectively, at the 95% confidence level. The limit of detection was 3.6, 3.0, 2.8 and 3.6 ng ml−1 for Fe(III), Co(II), Mn(II) and Cr (III), respectively, by applying a preconcentration factor of 25. The proposed enrichment method was applied for metal ion determination from water samples, alloy samples, infant foods and certified samples such as whey powder (IAEA-155) and aluminum alloy (NBS SRM 85b). The analytes were determined with a relative error lower than 10% in all samples.  相似文献   

11.
An SPE method for selective separation-preconcentration of Cu(ll), Zn(II), Ni(II), and Fe(III) on multiwalled carbon nanotubes (MWCNTs) modified by glutaric dihydrazide prior to flame atomic absorption spectrometric determination was investigated. The adsorption was achieved quantitatively on MWCNTs at pH 5.0, and then the retained metal ions on the adsorbent were eluted with 1 M HNO3. The effects of analytical parameters including pH of the solution, eluent type, sample volume, and matrix ions were investigated for optimization of the presented procedure. The adsorption capacity of the adsorbent at optimum conditions was found to be 33.6, 29.2, 22.1, and 36.0 mg/g for Cu(ll), Zn(ll), Ni(ll), and Fe(lll), respectively. The LOD values of the method were 0.21, 0.11, 0.24, and 0.27 microg/L for Cu(ll), Zn(ll), Ni(ll), and Fe(lll), respectively. The RSDs were lower than 3.01%. The method was applied for the determination of analytes in soil, river water, and wastewater samples with satisfactory results.  相似文献   

12.
The biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin for preconcentration-separation of them have been investigated. The sorbed analytes on biosorbent were eluted by using 1 mol L−1 HCl and analytes were determined by flame atomic absorption spectrometry. The influences of analytical parameters including amounts of pH, B. sphaericus, sample volume etc. on the quantitative recoveries of analytes were investigated. The effects of alkaline, earth alkaline ions and some metal ions on the retentions of the analytes on the biosorbent were also examined. Separation and preconcentration of Cu, Pb, Fe and Co ions from real samples was achieved quantitatively. The detection limits by 3 sigma for analyte ions were in the range of 0.20-0.75 μg L−1 for aqueous samples and in the range of 2.5-9.4 ng g−1 for solid samples. The validation of the procedure was performed by the analysis of the certified standard reference materials (NRCC-SLRS 4 Riverine Water, SRM 2711 Montana soil and GBW 07605 Tea). The presented method was applied to the determination of analyte ions in green tea, black tea, cultivated mushroom, boiled wheat, rice and soil samples with successfully results.  相似文献   

13.
A method for the simultaneous determination of chromium(III) and chromium(VI) by capillary electrophoresis (CE) has been developed. The chromium(III) has been chelated with 1,2-cyclohexanediaminetetraacetic acid (CDTA) in order to impart a negative charge and similar mobility to both the chromium(III) and the chromium(VI) species. The effects of the amount of the reagent, pH and heating time required to complete the complexation have been studied. Factors affecting the CE behaviour such as the polarity of electrodes and the pH of electrophoretic buffer have been investigated. The separated species have been monitored by direct UV measurements at 214 nm. The detection limits achieved are 10 g/l for Cr(VI) and 5 g/l for Cr(III) and linear detector response is observed up to 100 mg/l. The procedure has been applied to the determination of both chromium species in industrial electroplating samples and its accuracy was checked by comparing the results (as total chromium) with those of atomic absorption spectrometry. No interference occurred from transition metal impurities under optimized separation conditions. The method is also shown to be feasible for determining Cr(III) as well as other metal ions capable to form complexes with CDTA (like iron(III), copper(II), zinc(II) and manganese(II)) in pharmaceutical preparations of essential trace elements.  相似文献   

14.
A method for the simultaneous determination of chromium(III) and chromium(VI) by capillary electrophoresis (CE) has been developed. The chromium(III) has been chelated with 1,2-cyclohexanediaminetetraacetic acid (CDTA) in order to impart a negative charge and similar mobility to both the chromium(III) and the chromium(VI) species. The effects of the amount of the reagent, pH and heating time required to complete the complexation have been studied. Factors affecting the CE behaviour such as the polarity of electrodes and the pH of electrophoretic buffer have been investigated. The separated species have been monitored by direct UV measurements at 214 nm. The detection limits achieved are 10 microg/l for Cr(VI) and 5 microg/l for Cr(III) and linear detector response is observed up to 100 mg/l. The procedure has been applied to the determination of both chromium species in industrial electroplating samples and its accuracy was checked by comparing the results (as total chromium) with those of atomic absorption spectrometry. No interference occurred from transition metal impurities under optimized separation conditions. The method is also shown to be feasible for determining Cr(III) as well as other metal ions capable to form complexes with CDTA (like iron(III), copper(II), zinc(II) and manganese(II)) in pharmaceutical preparations of essential trace elements.  相似文献   

15.
A procedure for the pre-concentration of Cu(II), Fe(III), Mn(II) and Zn(II) is described utilising a minicolumn of natural cellulose (almond bark) modified with fungus (Rhizopus oryzae) prior to their determination by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). The optimum pre-concentration conditions such as pH and flow rate for the analytes have been investigated. The analytes were quantitatively retained on the column between pH 6 and 8. Elution was made with 10 mL 1 M HCl solution. Under the optimum conditions, recoveries were found as 97 ± 3%, 96 ± 3%, 98 ± 3% and 94 ± 2% for Cu(II), Fe(III), Mn(II) and Zn(II), respectively, at 95% confidence level. The detection limits obtained from preconcentration of 50 mL of blank solutions (n = 11) were 1.6, 1.8, 2.8 and 1.2 µg L?1 for Cu(II), Fe(III), Mn(II) and Zn(II), respectively. Relative standard deviations (RSD) of the recoveries for five replicate analyses were lower than 3%. The proposed method was validated by analysing certified reference materials (Peach Leaves SRM 1547 and Fish Tissue IAEA-407). Determination of the Cu(II), Fe(III), Mn(II) and Zn(II) in K?z?l?rmak River water, green beans, beans leave and tomato leaves and fish (Tinca tinca) tissue samples was performed by the proposed method.  相似文献   

16.
A chelating matrix prepared by immobilizing 1,8-dihydroxyanthraquinone on silica gel modified with 3-aminopropyltriethoxysilane has been characterized by use of cross-polarization magic angle spinning (CPMAS) NMR, diffuse reflectance infrared Fourier transformation (DRIFT) spectroscopy, and thermogravimetric analysis and used to preconcentrate Fe(III), Co(II), Ni(II), and Cu(II) before their determination by flame atomic absorption spectrometry. The optimum pH ranges for quantitative sorption are 6.5-8.0, 6.0-7.0, 6.0-8.0, and 7.0-8.5 for Cu, Fe, Co, and Ni, respectively. All the metal ions can be desorbed with 2 mol L(-1) HCl or HNO3. The sorption capacity ( micromol g(-1) matrix) and preconcentration factor were 226.6, 250; 365.6, 300; 101.8, 150; and 109.0, 250 for Cu, Fe, Co, and Ni, respectively. The lowest concentration for quantitative recovery was 4.0, 3.3, 6.6, and 4.0 ng mL(-1), respectively for the four metal ions. The limits up to which electrolytes NaNO3, NaCl, NaBr, Na2SO4, and Na3PO4 and cations Ca(II) and Mg(II) can coexist with the four metal ions during their sorption without adverse effect are reported. The simultaneous enrichment and determination of all the four metals is possible if the total load of metal ions is less than the sorption capacity. Flame AAS was used to determine the metal ions in underground, tap, and river water samples (RSD相似文献   

17.
A simple, sensitive and low cost, flow injection time-based method was developed for on-line preconcentration and determination of copper, lead and chromium(VI) at sub mug l(-1) levels in natural waters and biological samples. At the optimum pH, the on-line formed metal-ammonium pyrrolidine dithiocarbamate (APDC) complexes were sorbed on the unloaded commercial polyurethane foam (PUF), and subsequent eluted quantitatively by isobutylmethylketone and determined by flame atomic absorption spectrometry (FAAS). All chemical, and flow injection variables were optimized for the quantitative preconcentration of each metal and a study of interference level of various ions was also carried out. The system offered improved flexibility, low backpressure and applicability to all the studied metals. At a sample frequency of 36 h(-1) and a 60 s preconcentration time, the enhancement factor was 170, 131 and 28, the detection limit was 0.2, 1.8 and 2.0 mug l(-1), and the precision, expressed as relative standard deviation (s(r)), was 2.8 (at 10 mug l(-1)), 3.4 (at 50 mug l(-1)) and 3.6% (at 50 mug l(-1)) for Cu(II), Pb(II) and Cr(VI), respectively. The accuracy of the developed method was sufficient and evaluated by the analysis of certified reference materials and spiked water samples. Finally, the method was applied to the analysis of environmental samples.  相似文献   

18.
A new polychelatogen, AXAD-16-1,2-diphenylethanolamine, was developed by chemically modifying Amberlite XAD-16 with 1,2-diphenylethanolamine to produce an effective metal-chelating functionality for the preconcentration of Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) and their determination by flame atomic absorption spectrometry. Various physiochemical parameters that influence the quantitative preconcentration and recovery of metal were optimized by both static and dynamic techniques. The resin showed superior extraction efficiency with high-metal loading capacity values of 0.73, 0.80, 0.77, 0.87, 0.74, and 0.81 mmol/g for Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II), respectively. The system also showed rapid metal-ion extraction and stripping, with complete saturation in the sorbent phase within 15 min for all the metal ions. The optimum condition for effective metal-ion extraction was found to be a neutral pH, which is a great advantage in the preconcentration of trace metal ions from natural water samples without any chemical pretreatment of the sample. The resin also demonstrated exclusive ion selectivity toward targeted metal ions by showing greater resistivity to various complexing species and more common metal ions during analyte concentration, which ultimately led to high preconcentration factors of 700 for Cu(II); 600 for Mn(II), Ni(II), and Zn(II); and 500 for Cd(II) and Pb(II), arising from a larger sample breakthrough volume. The lower limits of metal-ion detection were 7 ng/mL for Mn(II) and Ni(II); 5 ng/mL for Cu(II), Zn(II), and Cd(II), and 10 ng/mL for Pb(II). The developed resin was successful in preconcentrating metal ions from synthetic and real water samples, multivitamin-multimineral tablets, and curry leaves (Murraya koenigii) with relative standard deviations of < or = 3.0% for all analytical measurements, which demonstrated its practical utility.  相似文献   

19.
The formation constants of some transition metal ions Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II) binary complexes containing Schiff bases resulting from condensation of salicylaldehyde with aniline (I), 2-aminopyridine (II), 4-aminopyridine (III) and 2-aminopyrimidine (IV) were determined pH-metrically in ethanolic medium (80%, v/v). The formation constants were determined for all binary complexes. The important infrared (IR) spectral bands corresponding to the active groups in the four ligands and the solid complexes under investigation were studied. The solid complexes have been synthesized and studied by thermogravimetric analysis. The thermal dehydration and decomposition of these complexes were studied kinetically using the integral method applying the Coats-Redfern equation. It was found that the thermal decomposition of the complexes follow second order kinetics. The thermodynamic parameters of the decomposition are also reported. The electronic absorption spectra of the investigated ligands were carried out to determine the pK(a) values spectrophotometrically.  相似文献   

20.
Mudasir  Yoshioka N  Inoue H 《Talanta》1997,44(7):1195-1202
A reversed phase ion-paired chromatographic method that can be used to determine trace amounts of iron (II,III), nickel (II) and copper (II) was developed and applied to the determination of iron (II) and iron (III) levels in natural water. The separation of these metal ions as their 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline) chelates on an Inertsil ODS column was investigated by using acetonitrile-water (80/20, v/v) containing 0.06 M perchloric acid as mobile phase and diode array spectrophotometric detection at 250-650 nm. Chromatographic parameters such as composition of mobile phase and concentration of perchloric acid in mobile phase were optimized. The calibration graphs of iron (II), nickel (II) and copper (II) ions were linear (r > 0.991) in the concentration range 0-0.5, 0-2.0 and 0-4.0 mug ml(-1), respectively. The detection limit of iron (II), nickel (II) and copper (II) were 2.67, 5.42 and 18.2 ng ml(-1) with relative standard deviation (n = 5) of 3.11, 5.81 and 7.16% at a concentration level of 10 ng ml(-1) for iron (II) and nickel (II) and 25 ng ml(-1) for copper (II), respectively. The proposed method was applied to the determination of iron(II) and iron(III) in tap water and sea water samples without any interference from other common metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号