首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gold nanoparticle-enabled biological and chemical detection and analysis   总被引:1,自引:0,他引:1  
Gold nanoparticles (AuNPs) are some of the most extensively studied nanomaterials. Because of their unique optical, chemical, electrical, and catalytic properties, AuNPs have attracted enormous amount of interest for applications in biological and chemical detection and analysis. The purpose of this critical review is to provide the readers with an update on the recent developments in the field of AuNPs for sensing applications based on their optical properties. An overview of the optical properties of AuNPs is presented first, followed by a more detailed literature survey. As the last part of this review, we compare the advantages and disadvantages of each technique, briefly discuss their commercialization status, and some technical issues that remain to be solved in order to move the technique forward (151 references).  相似文献   

2.
Chuanxiong Rhizoma (Chuan-Xiong, CX), the dried rhizome of Ligusticum chuanxiong Hort. (Umbelliferae), is one of the most popular plant medicines in the World. Modern research indicates that organic acids, phthalides, alkaloids, polysaccharides, ceramides and cerebrosides are main components responsible for the bioactivities and properties of CX. Because of its complex constituents, multidisciplinary techniques are needed to validate the analytical methods that support CX's use worldwide. In the past two decades, rapid development of technology has advanced many aspects of CX research. The aim of this review is to illustrate the recent advances in the chemical analysis and biological activities of CX, and to highlight new applications and challenges. Emphasis is placed on recent trends and emerging techniques.  相似文献   

3.
In recent years, the sensor array has attracted much attention in the field of complex system analysis on the basis of its good selectivity and easy operation. Many optical colorimetric sensor arrays are designed to analyze multi-target analytes due to the good sensitivity of optical signal. In this review, we introduce the targeting analytes, sensing mechanisms and data processing methods of the optical colorimetric sensor array based on optical probes (including organic molecular probes, polymer materials and nanomaterials). The research progress in the detection of metal ions, anions, toxic gases, organic compounds, biomolecules and living organisms (such as DNA, amino acids, proteins, microbes and cells) and actual sample mixtures are summarized here. The review illustrates the types, application advantages and development prospects of the optical colorimetric sensor array to help broad readers to understand the research progress in the application of chemical sensor array.  相似文献   

4.
5.
This work reviews some recent applications of solid-phase microextraction (SPME) for the chemical analysis of live biological samples. Application of SPME to microbiological analysis, organic volatile compounds emitted by vegetables and insect semiochemicals will be discussed. A short discussion on the principles and the basic parameters of SPME is also included.  相似文献   

6.
Due to their direct influence on the stability of bacterial biofilms, a better insight into the nanoscopic spatial arrangement of the different extracellular polymeric substances (EPS), e.g., polysaccharides and proteins, is important for the improvement of biocides and for process optimization in wastewater treatment and biofiltration. Here, the first application of a combination of confocal laser-scanning microscopy (CLSM) and atomic force microscopy (AFM) to the investigation of river-water biofilms and related biopolymers is presented. AFM images collected at selected areas of CLS micrographs dramatically demonstrate the heterogeneity of biofilms at the nanometer scale and the need for a chemical imaging method with nanoscale resolution. The nanostructures (e.g., pili, flagella, hydrocolloids, and EPS) found in the extracellular matrix are classified according to shape and size, which is typically 50–150 nm in width and 1–10 nm in thickness, and sets the demands regarding spatial resolution of a potential chemical imaging method. Additionally, thin layers of the polysaccharide alginate were investigated. We demonstrate that calcium alginate is a good model for the EPS architecture at the nanometer scale, because of its similar network-like structure. Figure CLSM-AFM allows imaging of nanometer-sized extracellular structures  相似文献   

7.
Nanopore technology has established itself as a powerful tool for single-molecule studies. By analysing changes in the ion current flowing through a single transmembrane channel, a wealth of molecular information can be elucidated. Early studies utilised nanopore technology for sensing applications, and subsequent developments have diversified its remit. Nanopores can be synthetic, solid-state, or biological in origin, but recent work has seen these boundaries blurred as hybrid functionalised pores emerge. The modification of existing pores and the construction of novel synthetic pores has been an enticing goal for creating systems with tailored properties and functionality. Here, we explore chemically functionalised biological pores and the bio-inspired functionalisation of solid-state pores, highlighting how the convergence of these domains provides enhanced functionality.

The convergence of chemistry, biology, and solid-state approaches enables the construction hybrid nanopores with enhanced single-molecule applications.  相似文献   

8.
Fluorescent nanoparticles (NPs), including quantum dots (QDs), dye-doped NPs, and rare earth-based NPs, etc., have been a major focus of research and development during the past decade. The impetus behind such endeavors can be attributed to their unique chemical and optical properties, such as bright fluorescence, high photostability, large Stocks shift and flexible processability. The introduction of fluorescent NPs into analytical chemistry has opened up new venues for fluorescent analysis. In this review...  相似文献   

9.
Various aspects of the structure, the reactivity in organic synthesis, in the atmosphere, in environment, in biology of ozone are described. Emphasis is placed on the relation with singlet oxygen and dihydrotrioxide.  相似文献   

10.
Interactions with aromatic rings in chemical and biological recognition   总被引:9,自引:0,他引:9  
Intermolecular interactions involving aromatic rings are key processes in both chemical and biological recognition. Their understanding is essential for rational drug design and lead optimization in medicinal chemistry. Different approaches-biological studies, molecular recognition studies with artificial receptors, crystallographic database mining, gas-phase studies, and theoretical calculations-are pursued to generate a profound understanding of the structural and energetic parameters of individual recognition modes involving aromatic rings. This review attempts to combine and summarize the knowledge gained from these investigations. The review focuses mainly on examples with biological relevance since one of its aims it to enhance the knowledge of molecular recognition forces that is essential for drug development.  相似文献   

11.
Nanotomography is a technique of growing importance in the investigation of the shape, size, distribution and elemental composition of a wide variety of materials that are of central interest to investigators in the physical and biological sciences. Nanospatial factors often hold the key to a deeper understanding of the properties of matter at the nanoscale level. With recent advances in tomography, it is possible to achieve experimental resolution in the nanometre range, and to determine with elemental specificity the three-dimensional distribution of materials. This critical review deals principally with electron tomography, but it also outlines the power and future potential of transmission X-ray tomography, and alludes to other related techniques.  相似文献   

12.
This paper reviews recent developments in the design and application of two types of optical nanosensor, those based on: (1) localized surface plasmon resonance (LSPR) spectroscopy and (2) surface-enhanced Raman scattering (SERS). The performance of these sensors is discussed in the context of biological and chemical sensing. The first section addresses the LSPR sensors. Arrays of nanotriangles were evaluated and characterized using realistic protein/ligand interactions. Isolated, single nanoparticles were used for chemosensing and performed comparably to the nanoparticle array sensors. In particular, we highlight the effect of nanoparticle morphology on sensing response. The second section details the use of SERS sensors using metal film over nanosphere (MFON) surfaces. The high SERS enhancements and long-term stability of MFONs were exploited in order to develop SERS-based sensors for two important target molecules: a Bacillus anthracis biomarker and glucose in a serum protein mixture.  相似文献   

13.
For the simultaneous determination of many elements in small biological samples, a multi-element analysis has been developed using neutron activation. After a 24-hr irradiation in a neutron flux of 2.5·1014 n·cm−2·sec−1 and after immediate chemical separation without cooling, it was possible to analyse 24 elements in bovine liver (NBS-SRM 1577). The separation apparatus, set up in a shielded cell can work four samples simultaneously, and its operation is fast enough to allow the detection of radioisotopes with a half-life of about 2 hrs (165Dy,57mSr,56Mn). Amounts lower than 10−3 μg of Dy, Eu, Pr, Sm and Yb were determined.  相似文献   

14.
15.
Photoacoustic imaging (PAI), as an emerging biomedicine diagnostic technique that has been developed quickly in the past decade, inherits the high spatial resolution of ultrasonography in imaging deep tissue and the high sensitivity of optical imaging in evaluating tissue chemical and physiological information. In this paper, after introducing the basic principles of PAI including both photoacoustic tomography and photoacoustic microscopy, we will review some recent progress of PAI in biomedicine and demonstrate the capability of PAI in detecting the chemical compositions and in evaluating the histological microstructures in biological tissue.  相似文献   

16.
General principles of the theory of stability of solutions to differential equations are considered. The stability of equations describing the dynamics of changes in reagent concentrations in polyenzymatic biochemical chains is analyzed. Various mechanisms of formation of stable and unstable stationary states are considered, and unbalanced regimes and collapse are analyzed. The influence of systems of toxins and drugs on stability is studied. An interpretation of pathological processes based on stability theory is given.  相似文献   

17.
Highly parallel dispensing of chemical and biological reagents   总被引:3,自引:0,他引:3  
We present a technology for the highly parallel dispensing of a multitude of reagents. It allows one to dispense up to 96 different reagents simultaneously in a fixed array, in a volume range of 100 pL up to several nL. The pitch of the dispensed droplets can be as small as 500 µm. All channels are fired simultaneously, giving an unprecedented throughput. The system was originally developed for the high-throughput fabrication of microarrays, but can easily be adopted for other applications such as highly parallel filling of nanotiterplates. Based on our standard configuration we achieved droplets with 125-µm in-flight diameter (1.2 nL) with a CV of <1%.  相似文献   

18.
The opioid oxycodone was produced from codeine, using a combination of chemical and biological catalysis. The use of novel functionalized ionic liquids permitted this reaction to be performed in a single solvent.  相似文献   

19.
Microfluidic systems are an attractive solution for the miniaturization of biological and chemical assays. The typical sample volume can be reduced up to 1 million-fold, and a superb level of spatiotemporal control is possible, facilitating highly parallelized assays with drastically increased throughput and reduced cost. In this review, we focus on systems in which multiple reactions are spatially separated by immobilization of reagents on two-dimensional arrays, or by compartmentalization in microfabricated reaction chambers or droplets. These systems have manifold applications, and some, such as next-generation sequencing are already starting to transform biology. This is likely the first step in a biotechnological transformation comparable to that already brought about by the microprocessor in electronics. We discuss both current applications and likely future impacts in areas such as the study of single cells/single organisms and high-throughput screening.  相似文献   

20.
This review describes a multidimensional treatment of molecular recognition phenomena involving aromatic rings in chemical and biological systems. It summarizes new results reported since the appearance of an earlier review in 2003 in host–guest chemistry, biological affinity assays and biostructural analysis, data base mining in the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB), and advanced computational studies. Topics addressed are arene–arene, perfluoroarene–arene, S⋅⋅⋅aromatic, cation–π, and anion–π interactions, as well as hydrogen bonding to π systems. The generated knowledge benefits, in particular, structure‐based hit‐to‐lead development and lead optimization both in the pharmaceutical and in the crop protection industry. It equally facilitates the development of new advanced materials and supramolecular systems, and should inspire further utilization of interactions with aromatic rings to control the stereochemical outcome of synthetic transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号