首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A flow cell with a radial distribution of four all-solid-state ion selective electrodes (ISEs), or alternatively three ISEs and one reference electrode, was designed and optimized for mass production. The radial distribution of the electrodes reduces the cell volume and is expected to minimize cross-contamination between different electrodes. Two different cell prototypes were developed and tested for all-solid-state K+-ISEs based on a solvent polymeric ion-selective membrane (ISM) and a conducting polymer, poly(3,4-ethylenedioxythiophene), as solid internal contact. In the first prototype, PEDOT was electropolymerized from an aqueous solution of the monomer and the doping ion salt, sodium polystyrenesulfonate (NaPSS). The second prototype employed an aqueous dispersion of PEDOT(PSS) that is commercially available (Baytron P, Bayer AG). Compared to electrochemical synthesis, solution casting of the polymer dispersion was found to be a more advantageous method to deposit the conducting polymer layer aiming at mass production. The resulting prototypes of the flow cell had a small volume (ca. 17-37 μl), which makes them suitable for application in clinical analysis.  相似文献   

2.
A novel concept for all-plastic and all-solid-state ion-selective electrodes (ISEs) is introduced. Planar, flexible ion-selective electrodes, comprising only polymeric materials, with no internal solution, were obtained. The cast conducting polymer layer (obtained from aqueous suspension) was covered with a solvent polymeric based membrane to obtain a planar all-plastic sensor. The conducting polymer layer served both as electrical contact and as ion-to-electron transducer. To illustrate this concept, the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) ions (PEDOT-PSS, Baytron P) was chosen. Due to interaction, analyte cations-poly(4-styrenesulfonate) anions, an extended linear range of potentiometric responses was obtained, with lowered detection limit.As example, Ca2+-selective and K+-selective all-plastic electrodes were fabricated and yielded with high selectivity, near Nernstian slopes and fast responses. The detection limits obtained for Ca2+- and K+-selective sensors were 5 × 10−9 M CaCl2 and 4.4 × 10−7 M KCl, respectively.The possibilities of modifying the conducting polymer-phase composition is highlighted. This method is extremely useful to tune the desired type of responses, and cannot be directly applied for electrochemically deposited conducting polymers.  相似文献   

3.
An all-solid-state fluoride ion-selective electrode (ISE) was prepared using LaF3 single crystal with poly(3,4-ethylenedioxythiophene (PEDOT) as the solid contact layer. In contrast to polymer-based ISEs, crystalline membrane-based ISEs have not been used for all-solid-state device, thereby prohibiting the integration of ISEs on a chip. The all-solid-state fluoride ISE developed in this study exhibited superior sensitivity (−56.0±0.9 mV/dec) and selectivity compared to those of conventional inner filling solution ISE. The effects of PEDOT as a solid contact layer were analyzed using chronopotentiometry and electrochemical impedance spectroscopy, which revealed that PEDOT promoted electrode stability. The all-solid-state device can miniaturize the fluoride ISE and facilitate environmental, industrial, agricultural, and physiological monitoring.  相似文献   

4.
Using poly(N-methyl-4-vinyl-pyridine iodide), N-methyl-pyridine iodide and iodine, a solid polymer electrolyte with conductivity of 6.41 mS/cm is prepared. On the basis of a solid polymer electrolyte, a conducting graphite layer, a KI block layer, and a vacuum assembling technique, we achieve an all-solid-state dye-sensitized solar cell with total photoelectric conversion efficiency of 5.64% under AM 1.5 simulated solar light (100 mW/cm2) illumination.  相似文献   

5.
A novel construction of solution free (pseudo)reference electrodes, compatible with all-solid-state potentiometric indicator electrodes, has been proposed. These electrodes use conducting polymers (CP): polypyrrole (PPy) or poly(3,4-ethylenedioxythiophene) (PEDOT). Two different arrangements have been tested: solely based on CP and those where the CP phase is covered with a poly(vinyl chloride) based outer membrane of tailored composition. The former arrangement was designed to suppress or compensate cation- and anion-exchange, using mobile perchlorate ions and poly(4-styrenesulfonate) or dodecylbenzenesulfonate anions as immobilized dopants. The following systems were used: (i) polypyrrole layers doped simultaneously by two kinds of anions, both mobile and immobilized in the polymer layer; (ii) bilayers of polypyrrole with anion exchanging inner layer and cation-exchanging outer layer; (iii) polypyrrole doped by surfactant dodecylbenzenesulfonate ions, which inhibit ion exchange on the polymer/solution interface. For the above systems, recorded potentials have been found to be practically independent of electrolyte concentration. The best results, profound stability of potentials, have been obtained for poly(3,4-ethylenedioxythiophene) or polypyrrole doped by poly(4-styrenesulfonate) anions covered by a poly(vinyl chloride) based membrane, containing both anion- and cation-exchangers as well as solid potassium chloride and silver chloride with metallic silver. Differently to the cases (i)-(iii) these electrodes are much less sensitive to the influence of redox and pH interferences. This arrangement has been also characterized using electrochemical impedance spectroscopy and chronopotentiometry.  相似文献   

6.
All-solid-state ion-selective electrodes with plastic membrane (poly(vinyl chloride) (PVC), bis(2-ethylhexyl) sebacate (DOS), methyltri-n-tetradecylammonium chloride (MTTACl)), a conducting poly(pyrrole) (PPy) film doped either with chloride ions (PPyCl) or hexacyanoferrate(II) ions (PPyFeCN), and glassy carbon (GC) or screen-printed graphite layer (S-PG) as an inner electric contact were investigated. All the electrodes show close to Nernstian response, but their lifetimes vary. The at least 2-months lifetime of screen-printed electrodes is only achieved for the electrodes containing PPyFeCN (cation-exchanging film). Shorter lifetime of other screen-printed electrodes, i.e. without PPy, or with PPyCl (anion-exchanging film), was attributed to the diffusion of anionic products of the hydrolysis of organic components of the graphite paste used to prepare the electric contact. The properties of miniature, screen-printed electrodes comprising PPyFeCN solid contact, were comparable to those ion-selective electrodes with PPy solid contact (regardless the ion-exchanging characteristic of the polymer) deposited on GC electric contact.  相似文献   

7.
《Electroanalysis》2005,17(18):1609-1615
Potentiometric Ag+ sensors were prepared by galvanostatic electropolymerization of 3,4‐ethylenedioxythiophene (EDOT) and pyrrole (Py) on glassy carbon electrodes by using sulfonated calixarenes as doping ions. Poly(3,4‐ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy) doped with p‐sulfonic calix[4]arene (C4S), p‐sulfonic calix[6]arene (C6S) and p‐sulfonic calix[8]arene (C8S) were compared. PEDOT and PPy doped with poly(styrene sulfonate) (PSS) were also included for comparison. The analytical performance of the conducting polymer‐based Ag+ sensors was studied by potentiometric measurements. All conducting polymer and dopant combinations showed sensitivity and selectivity to Ag+ compared to several alkali, alkaline‐earth, and transition‐metal cations. The type of the conducting polymer used for the fabrication of the electrodes was found to have a more significant effect on the selectivity of the electrodes to Ag+ than the ring size of the sulfonated calixarenes used as dopants. Selected conducting polymer‐based sensors were studied by cyclic voltammetry (CV) and energy dispersive analysis of X‐rays (EDAX) measurements. Results from the EDAX measurements show that both PEDOT‐ and PPy‐based membranes accumulate silver.  相似文献   

8.
Potentiometric ion sensors have been prepared by galvanostatic electrosynthesis of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with p-sulfonated calix[4]arene (C[4]S) and p-methylsulfonated calix[4]resorcarenes (Rn[4]S) with alkyl substituents of different chain length (R1=CH3; R2=C2H5; R3=C6H13). The bowl-shape of these doping ions makes them suitable as ionic recognition sites, and their bulky character is expected to prevent them from leaching out of the conducting polymer membrane. For comparison, sensors based on PEDOT doped with poly(styrene sulfonate) (PSS) and poly(vinyl sulfonate) (PVS) were also constructed. The resulting GC/PEDOT electrodes were conditioned in 0.01 mol L–1 AgNO3 and their performance as Ag+ ion-selective electrodes (ISEs) studied. Results reveal that selectivity and lifetime of the electrodes is affected by the doping anion structure, although all electrodes show selectivity towards Ag+ ions. Interaction of Ag+ with sulfur atoms present in the conducting polymer backbone is considered to be the main reason for this behavior. A second set of electrodes was constructed and conditioned in 0.1 mol L–1 KCl. These electrodes were tested in chloride solutions of quaternary ammonium cations, showing that C[4]S and R2[4]S exhibit significant sensitivity towards pyridinium.Dedicated to Professor György Horányi on the occasion of his 70th birthday in recognition of his outstanding contributions to electrochemistry  相似文献   

9.
A simple procedure of preparing low cost, planar and disposable reference electrodes for potentiometric applications is presented. This method is essentially the same as used for obtaining all-plastic ion-selective electrodes and thus promising for simple fabrication of complete cells. Commercially available aqueous dispersion of poly(3,4-ethylenedioxythiophene) doped by poly(4-styrenesulfonate) ions (PEDOT-PSS, Baytron P) is simply cast on a non-conducting plastic support (transparent foil for laser printers). This layer is covered by a non-selective poly(vinyl chloride) based membrane containing solid AgCl and KCl, added to obtain a stable potential. The conducting polymer layer plays a double role, of electrical contact and ion-to-electron transducer, enhancing the potential stability. The reference electrodes obtained exhibit independence of the kind and concentration of electrolyte applied as well as very low sensitivity to interferences: redox reactants and H+ ions; they are also characterized by both potential stability and low polarisability, sufficient for potentiometric applications. Cells of plastic electrodes (indicator and reference ones) are tested using an arrangement with Pb2+ or Ca2+ selective sensors. Potentiometric characteristic of such cells is satisfactory, well comparable with that using a classical electrode arrangement.  相似文献   

10.
Until now both ion‐to‐electron transducers as well as large surface area nanostructured conducting materials were successfully used as solid contacts for polymer‐based ion‐selective electrodes. We were interested to explore the combination of these two approaches by fabricating ordered electrically conducting polymer (ECP) nanostructures using 3D nanosphere lithography and electrosynthesis to provide a high surface area and capacitive interface for solid contact ion‐selective electrodes (SC‐ISEs). For these studies we used poly(3,4‐ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT(PSS)) films with 750 nm diameter interconnected pores as the intermediate layer between a glassy carbon electrode and a Ag+ ‐selective polymeric membrane. We also investigated the feasibility of loading the voids created in the polymer film with a lipophilic redox mediator (1,1’‐dimethylferrocene) to provide the respective ISEs with well‐defined/controllable E0 values. These expectations were fulfilled as the standard deviation of E0 values were reduced with almost an order of magnitude for 3D nanostructured SC‐ISEs filled with the redox mediator as compared to their redox mediator‐free analogs. The detrimental effect of the redox mediator extraction into the plasticized PVC‐based ion‐selective membrane (ISM) was efficiently suppressed by replacing the PVC‐based ISMs with a low diffusivity silicone rubber matrix.  相似文献   

11.
Solid-state potentiometric calcium sensors based on newly synthesized Schiff’s base of 3-aminosalycilic acid with benzil [2-hydroxy-3-(2-oxo-1,2-diphenylethylidene)amino) benzoic acid] ionophore I and with isatin [2-hydroxy-3-(2-oxoindolin-3-ylidene amino)benzoic acid] ionophore II ionophores and their covalently attached to polyacrylamide ionophores III and IV, respectively, were developed. The all-solid-state sensors were constructed by the application of a thin film of polymeric membrane cocktail onto gold electrodes that were pre-coated with the conducting polymer poly (3,4-ethylenedioxy-thiophen) as an ion and electron transducer. More than 40 sensors with membranes containing plasticized PVC or poly(butyl methacrylate-co-dodecyl methacrylate as a plasticizer-free membrane matrix were investigated. The constructed sensors contained various amounts of the different ionophores with and without anionic lipophilic additive. The sensor containing 10% of ionophore III and 3% tetra (p-chlorophenyl) borate in acrylate copolymer exhibited a stable potentiometric response over a wide pH range of 4–9. It possessed a linear concentration range of 6 10?10 to 1 10?2 mol L?1 with a Nernstian slope of 28.5 mV/decade and a limit of detection (LOD) of 2 10?10 mol L?1. It exhibited a good selectivity for calcium to other cations. The selectivity coefficients towards different mono-, di- and trivalent cations were determined with the fixed interference method (FIM) and separate solution method (SSM). The sensor’s life time is more than 3 months, without significant deterioration in the slope. The proposed sensors were utilized for the determination of calcium concentration in serum. The results were compared with those obtained from routine clinical laboratory electrolyte analyser. The results reveal that the all-solid-state calcium sensor is promising for the point of care testing.  相似文献   

12.
Comparison of potentials stability of different types of solid contact lead selective electrodes is presented. Conducting polymer based sensors (hydrophilic and conducting - poly(3,4-ethylenedioxythiophene) or hydrophobic and semiconducting-polyoctylthiophene) were studied in parallel with coated wire and hydrogel (poly(hydroxyethylmethacrylate)) contact electrodes. The within day and between days potential stability was compared, highlighting the effect of sensor storing conditions. The obtained results clearly demonstrate that different conclusions on stability of sensors’ potential can be drawn depending on experimental protocol applied. Polyoctylthiophene based contacts show superior within day stability with no influence of dry storage. On the other hand, a chronopotentiometric method of stability evaluation clearly prefers poly(3,4-ethylenedioxythiophene) based sensors, pointing to smallest resistance and polarizability. It is clearly shown that the choice of experimental conditions applied to test stability can favor particular type of contact used.The inductively coupled plasma mass spectrometry with laser ablation (LA-ICP-MS) experiments conducted for different arrangements tested has shown that for poly(3,4-ethylenedioxythiophene) and poly(hydroxyethylmethacrylate) type contacts longer contact time with lead(II) solution results in changes in the elemental composition of the transducer layer. On the other hand, in line with high stability observed under potentiometric conditions, no changes were seen for polyoctylthiophene based transducer.  相似文献   

13.
《Analytical letters》2012,45(12):2138-2149
Hydrogen ion-selective solid contact electrode based on decamethylcyclopentasiloxane (DMCS) as ionophore was fabricated. The membrane solution was prepared by mixing DMCS, polyvinyl chloride (PVC), potassium tetrakis p-chlorophenyl borate (KTpClPB) and various plasticizers. The best performance was obtained with the sensor based on NPOE (o-nitrophenyl octyl ether) and the conducting polymer layer of poly(pyrrole), doped with NaClO4. The electrode exhibited Nernstian-response in the range of pH 1.9–9.8 with a slope of 57.6 ± 0.2 mV per decade and fast response time within 15 s. This electrode showed good selectivity and was successfully used as an indicator electrode in the potentiometric titration.  相似文献   

14.
Typically, ion-selective electrodes used in current triggered electrochemical sensing apply a conducting polymer layer covered with an ion-selective membrane. In this work we propose an ion-selective membrane containing a dispersed conducting polymer. Thus obtained system allows elimination of the Achilles hell of heterogeneous ion-selective membranes containing solid particulates dispersed within the ion-selective polymeric membrane. The herein proposed system, even for high conducting polymer loading equal to 5 % w/w, is characterized with insensitivity towards redox interferences, as well as potentiometric detection limits, selectivity well comparable with that for other ion-selective electrodes constructions. Under voltammetric conditions, with increasing loading of the conducting polymer in the membrane cathodic peak potentials are shifted towards more negative values, yet the linear dependence of the peak potential on logarithm of concentration of the analyte in the solution is preserved.  相似文献   

15.
Voltammetric response of an all‐solid‐state ion‐selective electrode was studied on example of potassium‐selective sensor with poly(vinyl chloride) based membrane and nanocomposite transducer containing poly(3‐octylthiophene‐2,5‐diyl) and multiwalled carbon nanotubes. Factors limiting the rate of the electrochemical process and the response were discussed. The challenge in voltammetric applications of ion‐selective electrodes is thickness of the plastic membrane. It was found that although a relatively thick ion‐selective membrane was applied, as typically used in potentiometric studies, the position of the reduction peak, corresponding to potassium ions incorporation, was dependent on ions concentration in a Nernstian manner. This opens possibility of deviation from the paradigm of ultrathin membranes in voltammetric applications, thus potentially extending the sensors lifetime. The high resistance of the membrane did not affect the voltammetric characteristics, because the resistance was independent of ions concentration in solution. On the other hand, high resistance results in charge trapping effect in the solid contact material, leading to advantageous retention of the oxidized‐conducting state of the solid contact, independently of the applied electrode potential.  相似文献   

16.
All-solid-state ion-selective electrodes that use a conducting polymer as the ion-to-electron transducer have emerged as one of the most promising classes of all-solid-state potentiometric sensors in recent years. This is largely because it has many analytical advantages, including high response stability, which is unique in the field of internal-solution-free ion-selective electrodes. This paper reviews the considerable progress that has been made in this area of sensing in recent years, in terms of detection limits, selectivity coefficients and novel construction methods.  相似文献   

17.
The two most promising approaches for preparing solid contacts (SCs) for polymeric membrane based ion‐selective electrodes (ISEs) are based on the use of large surface areas conducting materials with high capacitance (e. g., various carbon nanotubes) and redox active materials (e. g. conducting polymers). While many of the essential requirements for the potential stability of SCISEs were addressed, the E0 reproducibility and its predictability, that would enable single use of such electrodes without calibration is still a challenge, i. e., the fabrication of electrodes with sufficiently close E0 and slope values to enable the characterization of large fabrication batches through the calibration of only a small number of electrodes. The most generic solution seems to be the adjustment of the E0 potential by polarization prior to the application of the ion‐selective membrane. This approach proved to be successful in case of conducting polymer‐based solid contacts, but has to be still explored for capacitive solid contact based ISEs, which is the purpose of this paper. We have chosen a well‐established highly lipophilic multi‐walled carbon nanotube (MWCNT), i. e. octadecane modified MWCNT (OD‐MWCNT), that is investigated in the comparative context of a similarly lipophilic conducting polymer solid contact (a perfluorinated alkanoate side chain functionalized poly(3,4‐ethylenedioxythiophene)). While, the OD‐MWCNT based SCISEs had inherently small standard deviation of their E0 values (less than 5 mV) this could be further improved by external polarization and short circuiting the SCISEs.  相似文献   

18.
Udenafil is an oral agent for treating male erectile dysfunction. The poly(aniline) solid contact selective electrodes for udenafil have been fabricated from PVC cocktail solutions with three ion selective ion pairs. This solid contact electrode contains three layers of Pt/electro-conductive poly(aniline) polymer/PVC film with an ionophore with a thickness of 2.5 ± 0.1 mm. We compared the slopes of EMF responses and the response range of a solid contact electrode based on Udenafil-TmCIPB ion pair with those based on Udenafil-PMA and Udenafil-TPB ion pairs and showed that the response slopes were influenced by plasticizers. The EMF response slopes of Udenafil-TmCIPB-based solid contact electrodes equalled 58.0 mV/decade (at 20 ± 0.2°C) and their linear response dynamic ranges were 1.0 × 10−2∼1.0 × 10−5.85 M (r 2 = 0.9984). When electrodes with 6 different plasticizers based on Udenafil-TmCIPB were compared, as the dielectric constant of PVC plasticizer increased, so was the response slope at the same time. Having applied the electrodes to artificial serum directly, we could get same satisfactory results [Nernstian slope: 60.3 mV/decade, dynamic range: 1.0 × 10−2∼1.0 × 10−5.78 M (r 2 = 0.9978) in artificial serum]. Solid contact electrodes with Udenafil-TmCIPB have shown the best selectivity, reproducibility of EMF, long-term stability, and short response time (< 20 s).  相似文献   

19.
The development of ion-selective electrodes with inner solid contact is described using photocurable acrylated polyurethane matrices and electron-ion exchanger (EI), which provides a reversible transition from electrical conductivity in the metal to ionic conductivity in the membrane phase. The application of a photocurable polymer matrix gives the possibility to use modern photolithographic techniques for the formation of all-solid-state chemical sensors. The influence of the polymer matrix and of the preparation of the membrane on the electro-chemical properties of calcium-selective membrane sensors is shown. For carbonate-selective membranes the possibility of improvement of electrochemical characteristics by incorporation of the anionic additive tetrakis (4-chlorophenyl) borate was studied.  相似文献   

20.
The new blue light polymer, poly(1′,4′‐phenylene‐1″,4″‐[2″‐(2″″‐ethylhexyloxy)]phenylene‐1‴,4‴‐phenylene‐2,5‐oxadiazolyl) (PPEPPO) was synthesized through the Suzuki reaction of diboronic acid, 2‐methoxy‐[5‐(2′‐ethylhexyl)oxy]‐1,4‐benzene diboronic acid (MEHBBA) and dibromide, 2,5‐bis(4′‐bromophenyl)‐1,3,4‐oxadiazole. This polymer was characterized with various spectroscopic methods. The solid PL spectrum of PPEPPO has a maximum peak at 444 nm corresponding to blue light. Blue LED has been fabricated using this polymer as the electroluminescent layer, ITO as the anode, and aluminum as cathode. This device emitted a blue light, with 40 V of turn‐on voltage. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3086–3091, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号