首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An on-line separation, preconcentration and determination system for vanadium(IV) and vanadium(V) comprising inductively coupled plasma optical emission spectrometry (ICP-OES) coupled to a flow injection (FI) method with an ultrasonic nebulization (USN) system was studied. The vanadium species were retained on an Amberlite XAD-7 resin as a vanadium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (V-5-Br-PADAP) complex at pH 3.7. Enhanced selectivity was obtained with the combined use of the formation on-line of the complexes and 1,2-cyclohexanediaminetetraacetic acid (CDTA) as masking agent. The vanadium complexes were removed from the microcolumn with 25% v/v nitric acid. A sensitivity enhancement factor of 225 was obtained with respect to ICP-OES using pneumatic nebulization (15-fold for USN and 15-fold for the microcolumn). The detection limit for the preconcentration of 10 mL of aqueous solution was 19 ng L-1. The precision for 10 replicate determinations at the 5 micrograms L-1 V level was 2.3% relative standard deviation (RSD), calculated from the peak heights obtained. The calibration graph using the separation and preconcentration system for vanadium species was linear with a correlation coefficient of 0.9992 at levels from near the detection limits up to at least 100 micrograms L-1. The method was successfully applied to the speciation of vanadium in river water samples.  相似文献   

2.
An on-line nickel preconcentration and determination system implemented with inductively coupled plasma optical emission spectrometry (ICP-OES) associated to flow injection (FI) was studied. Trace amounts of nickel were preconcentrated by sorption on a conical minicolumn packed with activated carbon (AC) at pH 5.0. The nickel was removed from the minicolumn with 20% nitric acid. An enrichment factor of 80-fold for a sample volume of 50 ml was obtained. The detection limit (DL) value for the preconcentration method proposed was 82 ng l−1. The precision for ten replicate determinations at the 0.5 μg l−1 Ni level was 3.0% relative standard deviation (R.S.D.), calculated from the peak heights obtained. The calibration graph preconcentration method for nickel was linear with a correlation coefficient of 0.9997 at levels near the detection limits (DL) up to at least 100 μg l−1. The method was successfully applied to the determination of nickel in natural water samples.  相似文献   

3.
A method for the preconcentration and speciation of chromium was developed. On-line preconcentration and determination were obtained using inductively coupled plasma optical emission spectrometry (ICP-OES) coupled with flow injection. To determinate the chromium (III) present in parenteral solutions, chromium was retained on activated carbon at pH 5.0. On the other hand, a step of reduction was necessary in order to determine total chromium content. The Cr(VI) concentration was then determined by difference between the total chromium concentration and that of Cr(III). A sensitivity enrichment factor of 70-fold was obtained with respect to the chromium determination by ICP-OES without preconcentration. The detection limit for the preconcentration of 25 ml of sample was 29 ng l−1. The precision for the 10 replicate determinations at the 5 μg l−1 Cr level was 2.3% relative standard deviation, calculated with the peak heights. The calibration graph using the preconcentration method for chromium species was linear with a correlation coefficient of 0.9995 at levels near the detection limits up to at least 60 μg l−1. The method can be applied to the determination and speciation of chromium in parenteral solutions.  相似文献   

4.
Cloud point extraction (CPE) was used for the selective extraction and separation of cerium(IV) from aqueous solutions. The method is based on the formation of cerium(IV)-n-p-tolylbenzohydroxamic acid (n-TBHA) complex that is extracted into the micellar phase (Triton X-114) at a temperature above the cloud point temperature (CPT). After phase separation, the surfactant rich phase was diluted up to 1.0 mL and determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). Under the optimum extraction conditions and instrument parameters, by preconcentration of only 10.0 mL of sample in the presence of 0.09% Triton X-114, an enhancement factor of 13.8 was obtained. The analytical curve was linear in the range of 1.5–1200 μg L−1 and the detection limit was 0.4 μg L−1. The method was applied to the determination of Ce(IV) in water samples with satisfactory results.  相似文献   

5.
A new on-line cloud point extraction (CPE) system coupled to ICP-OES was designed for simultaneous extraction, preconcentration and determination of Cd2+, Co2+, Cr3+, Cu2+, Fe3+ and Mn2+ ions in water samples. This is based on the complexation of the metal ions with 1-(2-thenoyl)-3,3,3-trifluoraceton reagent (TTA) at pH 6.0 in the presence of non-ionic surfactant of Triton X-114. The micellar solution was heated above 60 °C and loaded through a column packed with cotton, which acts as a filter for retaining the analyte-entrapped surfactant-rich phase. Then the surfactant-rich phase was eluted using propanol:0.5 mol L−1 nitric acid solution (75:25, v/v) at a flow rate of 3.0 mL min−1 and directly introduced into the nebulizer of the ICP-OES. Several factors influencing the instrumental conditions and extraction were evaluated and optimized. Under the optimum conditions, the enhancement factors of the proposed method for target ions were between 42 and 97, the detection limits (DLs) were in the range of 0.1-2.2 μg L−1. The relative standard deviations (R.S.D.s) at 100 μg L−1 concentration levels of each ion were found to be less than 4.6%. Also, the calibration graphs were linear in the range of 0.5-100 μg L−1 with the correlation coefficients within the range of 0.9948-0.9994.Finally, the developed method was successfully applied to the extraction and determination of the mentioned metal ions in the tap, well, sea and mineral water samples and satisfactory results were obtained.  相似文献   

6.
A low-flow air-cooled inductively coupled plasma (ICP) design for optical emission spectrometry (OES) with axial plasma viewing is described and an evaluation of its analytical capabilities in trace element determinations is presented. Main advantage is a total argon consumption of 0.6 L min−1 in contrast to 15 L min−1 using conventional ICP sources.The torch was evaluated in trace element determinations and studied in direct comparison with a conventional torch under the same conditions with the same OES system, ultrasonic nebulization (USN) and single-element optimization. A variety of parameters (x-y-position of the torch, rf power, external air cooling, gas flow rates and USN operation parameters) was optimized to achieve limits of detection (LOD) which are competitive to those of a conventional plasma source.Ionic to atomic line intensity ratios for magnesium were studied at different radio frequency (rf) power conditions and different sample carrier gas flows to characterize the robustness of the excitation source. A linear dynamic range of three to five orders of magnitude was determined under compromise conditions in multi-element mode. The accuracy of the system was investigated by the determination of Co, Cr, Mn, Zn in two certified reference materials (CRM): CRM 075c (Copper with added impurities), and CRM 281 (Trace elements in rye grass). With standard addition values of 2.44 ± 0.04 and 3.19 ± 0.21 μg g−1 for Co and Mn in the CRM 075c and 2.32 ± 0.09, 81.8 ± 0.4, 32.2 ± 3.9 for Cr, Mn and Zn, respectively, were determined in the samples and found to be in good agreement with the reported values; recovery rates in the 98-108% range were obtained. No influence on the analysis by the matrix load in the sample was observed.  相似文献   

7.
In this work a procedure for mercury determination by Flow Injection-Cold Vapor Generation-Inductively Coupled Plasma Optical Emission Spectrometry (FI-CVG-ICP OES) has been developed. The system uses a small homemade glass separator constructed to drive the Hg vapor to the plasma. An evolutionary operation factorial design was used to evaluate the optimal experimental conditions for mercury vapor generation, aiming at the low consumption of reagents, the improvement of the analytical signal and consequently greater sensitivity. The procedure allowed the determination of mercury and showed excellent linearity for the concentration range from 0.50 μg L(-1) to 100.0 μg L(-1), with Limits of Detection (LOD) and Quantification (LOQ) of 0.11 μg L(-1) and 0.36 μg L(-1), respectively, and a sampling rate of 36 analyses per hour. The optimized procedure showed good accuracy and precision, and the method was validated by the analysis of two certified reference materials: Buffalo River Sediment (NIST 2704) and human hair (IAEA 085). A good agreement with the certified values was achieved, with recovery values of 99% and 98% and relative standard deviation close to 2%.  相似文献   

8.
A novel nonchromatographic speciation technique for the speciation of mercury by sequential cloud point extraction (CPE) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed. The method based on Hg2+ was complexed with I to form HgI42−, and the HgI42− reacted with the methyl green (MG) cation to form hydrophobic ion-associated complex, and the ion-associated complex was then extracted into the surfactant-rich phase of the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114), which are subsequently separated from methylmercury (MeHg+) in the initial solution by centrifugation. The surfactant-rich phase containing Hg(II) was diluted with 0.5 mol L− 1 HNO3 for ICP-OES determination. The supernatant is also subjected to the similar CPE procedure for the preconcentration of MeHg+ by the addition of a chelating agent, ammonium pyrrolidine dithiocarbamate (APDC), in order to form water-insolvable complex with MeHg+. The MeHg+ in the micelles was directly analyzed after disposal as describe above. Under the optimized conditions, the extraction efficiency was 93.5% for Hg(II) and 51.5% for MeHg+ with the enrichment factor of 18.7 for Hg(II) and 10.3 for MeHg+, respectively. The limits of detection (LODs) were 56.3 ng L− 1 for Hg(II) and 94.6 ng L− 1 for MeHg+ (as Hg) with the relative standard deviations (RSDs) of 3.6% for Hg(II) and 4.5% for MeHg+ (C = 10 μg L−1, n = 7), respectively. The developed technique was applied to the speciation of mercury in real seafood samples and the recoveries for spiked samples were found to be in the range of 93.2–108.7%. For validation, a certified reference material of DORM-2 (dogfish muscle) was analyzed and the determined values are in good agreement with the certified values.  相似文献   

9.
Cloud point extraction methodology was successfully employed for preconcentration of trace amounts of amaranth prior to its determination by spectrophotometry. The method was based on the extraction of amaranth as an ion pair with tetrabutylammonium ion from aqueous solution using Triton X-100 as non-ionic surfactant. The extracted surfactant rich phase was diluted with ethanol and its absorbance was measured at 518 nm by a spectophotometer. An optimum set of surfactant concentration, pH, equilibration temperature and time, tetrabutylammonium hydrogen sulfate and salt concentration were obtained. The calibration graph was linear in the range of 20–1600 ng ml?1 of amaranth in the initial solution with r = 0.9993 (n = 12). Detection limit based on three times the standard deviation of the blank (3Sb) was 13.0 ng ml?1 (n = 10), and the relative standard deviation (R.S.D) for 100 and 1000 ng ml?1 of amaranth was 4.2 and 1.4% (n = 10), respectively. The proposed procedure was applied to the determination of amaranth in different food samples.  相似文献   

10.
Cloud point extraction (CPE) has been used for the pre-concentration of mercury, after the formation of a complex with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)-phenol (5-Br-PADAP), and later analysis by electrothermal atomic absorption spectrometry (ETAAS) using polyethyleneglycolmono-p-nonyphenylether (PONPE 7.5) as surfactant. The chemical variables affecting the separation step were optimized. Under the optimum conditions, i.e, pH 8.5, cloud point temperature 80 degrees C, 5-Br-PADAP=4x10(-5) mol L(-1), PONPE 7.5=0.2%, sample volume=1.0 mL, an enhancement factor of 22-fold was reached. The lower limit of detection (LOD) obtained under the optimal conditions was 0.01 microg L(-1). The precision for 10 replicate determinations at 2.0 microg L(-1) Hg was 4.0% relative standard deviation (R.S.D.). The calibration graph using the pre-concentration system for mercury was linear with a correlation coefficient of 0.9994 at levels near the detection limits up to at least 16 microg L(-1). The method was successfully applied to the determination of mercury in biological samples and in certified reference material (QC METAL LL3).  相似文献   

11.
A novel adsorbent of chitosan chemically modified ordered mesoporous silica was synthesized and employed as a solid phase extraction (SPE) material for flow injection (FI) micro-column preconcentration on-line coupled with inductively coupled plasma optical emission spectrometry (ICP-OES) determination of trace heavy metals V, Cu, Pb, Cd and Hg in environmental water samples. The factors affecting separation and preconcentration of target heavy metals such as pH, sample flow rate and volume, eluent concentration and volume, interfering ions were investigated. Under the optimized experimental conditions, an enrichment factor of 20 and sampling frequency of 10 h−1 were obtained. The detection limits of the method for V, Cu, Pb, Cd and Hg were 0.33, 0.30, 0.96, 0.05 and 0.93 ng mL−1, and the relative standard deviations (RSDs) were 2.8%, 6.7%, 1.8%, 4.0% and 5.3% (n = 7, C = 10 ng mL−1), respectively. The adsorption capacities of chitosan modified ordered mesoporous silica for V, Cu, Pb, Cd, and Hg were found to be 16.3, 21.7, 22.9, 12.2 and 13.5 mg g−1, respectively. In order to validate the developed method, a certified reference material of GSBZ50009-88 environmental water sample was analyzed and the determined values were in good agreement with the certified values. The proposed method has also been applied to the determination of trace heavy metals in natural water samples with satisfactory results.  相似文献   

12.
A new method is described for the separation of molybdenum based on its chelation in a column packed with quercetin, immobilized on silica gel in a slightly acidic medium (pH 5.0). Recovery ranged from 95% (NIST 1515 apple leaves) to 99% (deionized, distilled water; DDW) with an absolute blank of 27.5±1.6 pg obtained for the analysis of DDW. Detection limits, absolute and relative, based on a 5.0-ml sample volume were 4.8 pg and 1 ng l−1, respectively. Results are presented for molybdenum determination in two standard reference materials, NIST 1515 and NIST 1547 peach leaves, using simple calibration curves for quantification. α-Benzoinoxime was used as the eluent.  相似文献   

13.
A micro-scale flow system is proposed for on-line preconcentration of Cd, Cu, Mn, Ni and Pb in saliva samples and their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). A small column containing 8 μl of AG50W-X8 resin was inserted into the flow system, assembled with capillary tubes and connected to a micro-concentric nebulizer. The elution of the analytes was performed with 3 mol l−1 HCl at a flow rate of 82 μl min−1. The ICP-OES signal acquisition program permits measurements for 5 s in the concentrated portion of the transient elution peaks. A sample volume of 1 ml was required to obtain enrichment factors of 46, 23, 17, 18 and 44 for Cd, Cu, Mn, Ni and Pb, respectively. The relative standard deviations for a 50-μg l−1 multi-analyte solution were ≤6.5%. The recoveries for Cd, Cu, Mn, Ni and Pb in digested human saliva samples were between 86 and 111%. The sample throughput was 24 h−1.  相似文献   

14.
A procedure was developed for the analysis of 18 trace impurity elements in capacitor-grade tantalum powder (Ta), potassium tantalum fluoride (K2TaF7), and tantalum pentoxide (Ta2O5) using inductively coupled plasma optical emission spectrometry (ICP-OES). The detection limits achieved were in the ppb levels. The samples were dissolved in hydrofluoric acid (HF) in a microwave digestion system and the Ta matrix was extracted using cyclo hexanone. The impurity traces remained almost completely in the aqueous phase. The text was submitted by the authors in English.  相似文献   

15.
建立了电感耦合等离子体原子发射光谱(ICP-AES)法测定铁矿石中钒含量的分析方法。采用盐酸、硝酸、氢氟酸、高氯酸分解试样,不溶物残渣碱熔融回收,稀盐酸溶解盐类的方式对样品进行分解。对仪器的主要工作参数和分析谱线进行了选择,讨论了基体和共存元素的干扰,以及溶解酸和熔剂等条件实验,确立了最佳分析条件。按实验方法对铁矿石标准样品和试样中钒量进行测定,测定值与标准值或其它方法的认定值基本一致,相对标准偏差RSD<6.5%。  相似文献   

16.
A critical evaluation of the determination of uranium by inductively coupled plasma optical emission spectrometry was performed using factorial designs (23) involving the factors: acid concentration, radio frequency power and nebulizer gas flow rate. All of the experiments in this study were made for five emission lines, in the presence of nitric and hydrochloric acid. The results demonstrated that, between nitric and hydrochloric acid, the determinations in the presence of nitric acid were most sensitive. The factorial design showed that the nebulizer gas flow rate was the most significant among the factors studied for the five emission lines. Calcium in concentrations of 10 mg L−1 was observed to cause suppression of the emission intensity for some lines. Iron (at least up to 10 mg L−1) did not interfere in the emission intensity of uranium across the five lines studied. Another experiment evaluated simultaneously the effect of 13 other elements, and the results demonstrated that these elements did not affect the emission intensity of uranium for the lines chosen. The optimized method, using the line at 385.957 nm, allows the determination of uranium with limit of quantification of 31 μg L−1 and precision expressed as RSD lower than 2.2% for uranium concentrations of either 500 or 1000 μg L−1. The accuracy was confirmed by analysis of two laboratory reference materials. The developed method was applied to the determination of uranium in an industrial effluent collected from uranium-producing mine in Caetite City, Brazil. The sample was analyzed by inductively coupled plasma mass spectrometry ICP-MS, and the observed recovery was satisfactory.  相似文献   

17.
Summary The application of inductively coupled plasma optical emission spectrometry (ICP-OES) to the determination of boron was studied with regard to the optimization of boron neutron capture therapy (BNCT), a method used in cancer radiotherapy. In order to enable trace determinations of B in tissue down to the sub g/g-level (as this application requires), the different parameters of ICP-OES (gas flow, power, observation height) were optimized towards highest power of detection. Two different nebulizers (Babington and Meinhard nebulizer) as well as ICPs with argon or nitrogen as outer gases were used. The optimization was carried out with the aid of a modified simplex. The lowest detection limit for B (25 ng/ml) is obtained in the case of a Babington nebulizer and with an ICP using Ar as outer gas as well as a forward power of 1.3 kW (plate voltage at the r.f. generator: 2.75 kV). Therefore, the nebulizer gas flow had to be set at 1.1 l/min (at 4.5 bar) and an intermediate gas flow of 5 l/min in the case of a Greenfield-type torch was required. After optimization the natural concentration of B in biological tissues (0.1–0.3 g/g) could be determined after decomposition of 1–1.5 g of the sample with 5 ml HNO3 (63%) at high temperature and pressure during 2 h in closed PTFE vessels. Results obtained with spiked liver standards were precise (RSD 5%–8%) and accurate in a concentration range of 5 g/g to 100 g/g. The method developed could be satisfactorily used for the analysis of tissue samples of mice tumors. Furthermore, the uptake and metabolization of boron and its derivatives could be well monitored at the 1–5 g/g level.Dedicated to Prof. Dr. V. Krivan on the occasion of his 60th birthday  相似文献   

18.
Titanium dioxide is a common food additive of increasing interest in dietary intake studies and dietary exclusion studies. Food labelling for titanium dioxide is imprecise so a method was developed for its rapid determination in foods using acid digestion and inductively coupled plasma optical emission spectrometry (ICPOES). Twenty-five foods thought to contain titanium dioxide were obtained. Based on preliminary digestion studies, samples (500 mg) were digested in 18 mol l-1 H2SO4 at 250 degrees C for 1 h and then diluted to 5.9 mol l-1 H2SO4 before determination of titanium by ICPOES at 336.121 nm. Emission intensity was suppressed by H2SO4 so standards were matched for acid concentration. Titanium dioxide embedded in gelatine was used to assess accuracy. A standard reference material of known titanium concentration and six foods of known titanium dioxide content were used as external reference materials. Limits of detection were 2-7.5 ppb, depending on spectral integration times, and the signal was linear up to 5 ppm. Results for all control samples were in good agreement with the expected values. Twelve of the foods contained detectable titanium, ranging from 0.001 to 0.782% by weight, but only eight indicated this on their labels, four being exempt under food labelling regulations. Based on food portion sizes, an individual's daily intake of titanium dioxide could exceed 200 mg from just one of these products. This method may facilitate future studies on titanium dioxide intake, given the present limitations of food labelling.  相似文献   

19.
A procedure for partial digestion of bovine tissue is proposed using polytetrafluoroethylene (PTFE) micro-vessels inside a baby-bottle sterilizer under microwave radiation for multi-element determination by inductively coupled plasma optical emission spectrometry (ICP OES). Samples were directly weighed in laboratory-made polytetrafluoroethylene vessels. Nitric acid and hydrogen peroxide were added to the uncovered vessels, which were positioned inside the baby-bottle sterilizer, containing 500 mL of water. The hydrogen peroxide volume was fixed at 100 µL. The system was placed in a domestic microwave oven and partial digestion was carried out for the determination of Ca, Cu, Fe, Mg, Mn and Zn by inductively coupled plasma optical emission spectrometry. The single-vessel approach was used in the entire procedure, to minimize contamination in trace analysis. Better recoveries and lower residual carbon content (RCC) levels were obtained under the conditions established through a 24-1 fractional factorial design: 650 W microwave power, 7 min digestion time, 50 µL nitric acid and 50 mg sample mass. The digestion efficiency was ascertained according to the residual carbon content determined by inductively coupled plasma optical emission spectrometry. The accuracy of the proposed procedure was checked against two certified reference materials.  相似文献   

20.
A simple, rapid, and sensitive method with high sample throughput was developed for determining arsenic in traditional Chinese medicine (TCM) in the form of uncoated tablets, sugar-coated tablets, black pills, capsules, powders, and syrups. The method involves microwave digestion with flow injection-inductively coupled plasma mass spectrometry (FI-ICP-MS). Method precision was 2.7-10.1% (relative standard deviation, n = 6) for different concentrations of arsenic in different TCM samples analyzed by different analysts on different days. Method accuracy was checked with a certified reference material (sea lettuce, Ulva lactuca, BCR CRM 279) for external calibration and by spiking arsenic standard into different TCMs. Recoveries of 89-92% were obtained for the certified reference material and higher than 95% for spiked TCMs. Matrix interference was insignificant for samples analyzed by the method of standard addition. Hence, no correction equation was used in the analysis of arsenic in the samples studied. Sample preparation using microwave digestion gave results that were very similar to those obtained by conventional wet acid digestion using nitric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号