首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The binding interactions of lysozyme with 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol were investigated by UV-vis absorption, CD, fluorescence, synchronous fluorescence, and three-dimensional fluorescence spectra techniques under physiological pH 7.40. The binding constants, quenching mechanism, and the number of binding sites were determined by the quenching of lysozyme fluorescence in presence of chlorophenols. H-bonds and hydrophobic interactions played major roles in stabilizing the chlorophenols-lysozyme complex. The distances r between chlorophenols and lysozyme were calculated to be 1.94nm, 2.75nm, 3.54nm, and 3.76nm for 2-CP, 2,4-DCP, 2,4,6-TCP, and PCP, respectively. The effects of chlorophenols on the conformation of lysozyme were analyzed using CD, synchronous fluorescence and three-dimensional fluorescence spectra.  相似文献   

2.
Summary The efficiency and sensitivity of C18 reversed-phase adsorption of free chlorophenols and of n-hexane extraction of either free or acetylated chlorophenols from human urine were compared. All procedures were found to be efficient for the trace enrichment of 2,4-dichlorophenol, 2,4,6- and 2,4,5-trichlorophenols, 2,3,4,6- and 2,3,4,5-tetrachlorophenols and pentachlorophenol. The recoveries of chlorophenols from non-hydrolysed and acid hydrolysed urine samples were comparable. By treatment of 1 ml urine sample detection limits of 1–2 ng/ml were achieved, while the treatment of 5 ml samples enhanced the detection sensitivity to less than 1 ng/ml. The n-hexane extraction of acetylated chlorophenols from 1 ml urine samples is the simplest and fastest procedure because the acetylation and extraction of chlorophenols are performed simultaneously in one step. The C18 adsorption seems to be more suitable than n-hexane extraction for accumulation of chlorophenols from a urine volume of 5 ml and higher because the elution is performed always with the same small volume of acetone. Both C18 adsorption and n-hexane extraction procedures were applied for analysis of chlorophenols in general population and in persons with possible occupational exposure to organochlorine compounds.  相似文献   

3.
Transition Metal Chemistry - The chlorophenols (CPs), 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP), are potent environmental hazards. They can be...  相似文献   

4.
Infrared study of chlorophenols and products of their photodegradation   总被引:1,自引:0,他引:1  
Czaplicka M  Kaczmarczyk B 《Talanta》2006,70(5):940-949
The presents study of the 3-chlorophenol, 2,4-dichlorophenol, 2,3,4,5-tetrachlorophenol, pentachlorophenol and products of their photodegradation using FT-IR spectroscopy and GC/MS. Spectra of pure chlorophenols with the spectra of their solutions after photodegradation were compared. FT-IR spectra of pure chlorophenols investigated in the region of 3700–3000 cm−1 show that in particular cases the position and shape of bands corresponding to stretching vibration of hydroxyl groups are different. In all cases, the differences between spectra of pure chlorophenols and irradiated solutions were observed. It was confirmed that different distribution of types of hydrogen bonds appearing in particular chlorophenols has strong influence on the process of irradiation reaction and final products.  相似文献   

5.
The aim of this work was to investigate the efficiency of various MWCNTs as SPE materials for the preconcentration of chlorophenols. The COOH-functionalized MWCNTs and MWCNTs were used as SPE sorbents. To evaluate the capability of MWCNTs for the preconcentration of chlorophenols from water samples, 2,4-chlorophenol, 4-chlorophenol, 2,4,6-chlorophenol, 2,6-chlorophenol, 3,4-chlorophenol, and 2-chlorophenol were used as model compounds. Chlorophenols were extracted with acetone, methanol, ethanol, and dichloromethane, and determined by gas chromatography–mass spectrometry. COOH-functionalized MWCNTs <8 nm were found to be the best sorbent for the tested chlorophenols. For COOH-functionalized MWCNTs <8 nm, the recovery rates for all chlorophenols were higher than 50% when acetone or ethanol was used as eluents. In the case of dichloromethane elution, recovery rates for chlorophenols were from 62.0% for 2,6-DCP to 116.8% for 2,4-DCP; only for 2,4,6-TCP was the recovery rate 30.6%. Similar percentage recoveries were achieved with methanol as the eluent.  相似文献   

6.
《Analytical letters》2012,45(2):262-272
Abstract

Hydrophobic deep eutectic solvents (DESs) were synthesized and developed for the preconcentration of three chlorophenols from wastewater by dispersive liquid–liquid microextraction (DLLME). The analyte concentrations were determined by high-performance liquid chromatography (HPLC). The hydrophobic DESs were prepared with the combination of hydrogen bond donors of decanoic acid or octanoic acid with different hydrogen bond acceptors of quaternary ammonium salts of tetrabutylammonium chloride, tetraoctylammonium chloride, methyltrioctylammonium chloride, and tetraheptylammonium chloride). Following the study of the stability and characterization by Fourier transform infrared spectroscopy, the hydrophobic DESs were developed as extractants and employed for the removal of 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) from wastewater. Using hydrophobic DESs as the microextraction solvents, several key parameters were optimized, including the type and volume of the hydrophobic DES, pH, and time of the extraction procedure. Under the optimized conditions, good recoveries from 90.8% to 93.0% were obtained for the three chlorophenols. The limits of detection were less than 0.05?µg/mL with relative standard deviations between 1.8% and 3.1%. The method was applied for the isolation and determination of synthetic chlorophenols in wastewater.  相似文献   

7.
Sorption of phenol, 3-cresol, 2-, 3-, 4-nitrophenols, 2,4-, 2,6-dinitrophenol, 2,4,6-trinitrophenol, and 1-naphthol by polyether- and polyester-type polyurethane foams (PUF) was investigated. The effects of sorption time, pH, phenol concentration and the structure of tested phenols and PUF were studied. The mechanism of sorption of tested compounds on foams is discussed. It is shown that the hydrophobicity (logP, octanol-water distribution constant) and pK(a) values of the compounds play an important role in the sorption process. A regression equation connecting distribution coefficient of phenols by PUF with their hydrophobicity parameter and pK(a) values were derived. Good correlation between logD and values logP and pK(a) was observed.  相似文献   

8.
A modified headspace liquid-phase microextraction (HS-LPME) method was studied for the extraction of chlorophenols (CPs) from aqueous samples with complicated matrices, before gas chromatographic (GC) analysis with electron capture detection (ECD). Microwave heating was applied to accelerate the evaporation of CPs into the headspace, and an external-cooling system was used to control the sampling temperature. Conditions influencing extraction efficiency, such as the LPME-solvent, the sampling position of LPME, the sampling temperature, microwave power, and irradiation time (the same as sampling time), sample pH, and salt addition were thoroughly optimized. Experimental results indicated that the extraction of CPs from a 10mL aquatic sample (pH 1.0) was achieved with the best efficiency through the use of 1-octanol as solvent, microwave irradiation of 167W, and sampling at 45 degrees C for 10min. The detections were linear in the concentration of 5.0-100microg/L for 2,4-dichlorophenol (2,4-DCP), and 0.5-10microg/L for 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP). Detection limits were found to be 0.7, 0.04, 0.07, and 0.08microg/L for 2,4-DCP, 2,4,6-TCP, 2,3,4,6-TeCP, and PCP, respectively. A landfill leachate sample was analyzed with recovery between 83 and 102%. The present method was proven to serve as a simple, sensitive, and rapid procedure for CP analysis in an aqueous sample.  相似文献   

9.
A new method, stir bar sorptive extraction (SBSE) with in situ derivatization and thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS), which is used for the determination of trace amounts of chlorophenols, such as 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TrCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP), in tap water, river water and human urine samples, is described. The derivatization conditions with acetic acid anhydride and the SBSE conditions such as extraction time are investigated. Then, the stir bar is subjected to TD followed by GC-MS. The detection limits of the chlorophenols in tap water, river water and human urine samples are 1-2, 1-2, and 10-20 pg ml−1 (ppt), respectively. The calibration curves for the chlorophenols are linear and have correlation coefficients higher than 0.99. The average recoveries of the chlorophenols in all the samples are higher than 95% (R.S.D. < 10%) with correction using added surrogate standards, 2,4-dichlorophenol-d5, 2,4,6-trichlorophenol-13C6, 2,3,4,6-tetrachlorophenol-13C6 and pentachlorophenol-13C6. This simple, accurate, sensitive and selective analytical method may be applicable to the determination of trace amounts of chlorophenols in liquid samples.  相似文献   

10.
The chromatographic fractionation of aquatic humic substances (HS) onto iron(III)-coated cellulose (Cell-Fe(III)) as a metal-loaded adsorbent is described, analogously to the separation principle of the well-established metal affinity chromatography (MAC). For that purpose the sorption of HS from different aquatic origin on that collector was characterized by their kinetics and equilibrium distribution coefficients Kd. Based on Kd values of 103 to 104,mL/g, and fast sorption kinetics a preparative HPLC procedure, using stepwise increased pH-values (pH 8–12.5, borate buffer) as an eluent, was developed for the fractionation of dissolved HS (up to 7 fractions of different amount). The fractions obtained by this MAC procedure from selected aquatic HS samples were different in their Cu(II) complexation capacity, absorbance ratio E265 nm/E365 nm and Fourier transform infrared spectra. Received: 14 June 1999 / Revised: 6 August 1999 / Accepted: 10 August 1999  相似文献   

11.
The chromatographic fractionation of aquatic humic substances (HS) onto iron(III)-coated cellulose (Cell-Fe(III)) as a metal-loaded adsorbent is described, analogously to the separation principle of the well-established metal affinity chromatography (MAC). For that purpose the sorption of HS from different aquatic origin on that collector was characterized by their kinetics and equilibrium distribution coefficients Kd. Based on Kd values of 103 to 104,mL/g, and fast sorption kinetics a preparative HPLC procedure, using stepwise increased pH-values (pH 8–12.5, borate buffer) as an eluent, was developed for the fractionation of dissolved HS (up to 7 fractions of different amount). The fractions obtained by this MAC procedure from selected aquatic HS samples were different in their Cu(II) complexation capacity, absorbance ratio E265 nm/E365 nm and Fourier transform infrared spectra. Received: 14 June 1999 / Revised: 6 August 1999 / Accepted: 10 August 1999  相似文献   

12.
Landfill leachates represent a serious environmental concern with regard to trace priority pollutants introduced into the aquatic environment. From the analytical point of view, they constitute complex matrices because of their high organic matter content and competition with the trace analytes in the extraction procedure. Although the use of SPME to extract chlorophenols in leachates has already been described in several publications, the limited number of chlorophenols restricts this analysis field of application. This paper presents a new analytical methodology to determine 13 chlorophenols and phenol by SPME-GC-MS in landfill leachates. The overall analysis was performed in 90 min and the detection limits range from 0.005 microg/l (pentachlorophenol) to 2.5 microg/l (phenol). Reproducibility, expressed by the coefficient of variation of repeated extractions at different concentration levels of the analytes, was on average inferior to 10%. Recovery, evaluated by standard addition to leachates, was 86.2% on average. Pentachlorophenol, 2,3,4,5-tetrachlorophenol and 2,3,4,6-tetrachlorophenol were the sole analytes detected at nanogram level in the landfill leachates analysed.  相似文献   

13.
The sorption of β-cyclodextrin polymer (β-CDP) and γ-cyclodextrin polymer (γ-CDP) toward 2,4-dichlorophenol (2,4-DCP) in aqueous solutions was investigated. The influence of sorption conditions including initial 2,4-DCP concentration, contact time and pH on sorption capability were discussed. Their sorption behaviors for 2,4-DCP were conducted and it was found the sorption kinetics followed the Ho and McKay equation and the film diffusion was the rate-determined step. The sorption isotherm can be correlated to Freundlich model and the sorption capacity on β-CDP was much larger than that on γ-CDP. The maximum sorption capacity of 2,4-DCP for β-CDP was measured to be 0.16 mmol/g with the initial concentration at 0.67 mmol/L at 288 K. The CDPs were easily recovered by ethanol as washing solvent and they could be used as a kind of recyclable sorbents.  相似文献   

14.
Liu J  Niu J  Yin L  Jiang F 《The Analyst》2011,136(22):4802-4808
A biosensor based on Trametes versicolor laccase (Lac) was developed for the determination of phenolic compounds. The biosensor was prepared by in situ electrospinning of a mixture of polyvinyl alcohol (PVA), Lac, PEO-PPO-PEO (F108) and gold nanoparticles (Au NPs), where F108 was used as an enzyme stabilizing additive and Au NPs was used to enhance the conductivity of the biosensor. Laser confocal scanning microscopy and electrochemical impedance spectroscopy proved that the enzyme was successfully encapsulated into the electrospun nanofibers. Under the optimal conditions, the lowest detection limit was found to be 0.04 μM (S/N = 3) for 2,4-DCP and the highest detection limit was found to be 12.10 μM for 4-CP. The sensitivity of the biosensor obtained in the linear range for chlorophenols followed the sequence 2,4-dichlorophenol (2,4-DCP) > 2,4,6-trichlorophenol (2,4,6-TCP) > 4-chlorophenol (4-CP). The sensing performance for chlorophenols was attributed to the suitable electrochemical interface of PVA/F108/Au NPs/Lac, resulting from biocompatibility, a high surface area-to-volume ratio (10.42 m(2) g(-1)) and superior mechanical properties of the electrospun nanofibers. The biosensor exhibited good repeatabilities of 7.6%, 2.8% and 9.0% (R.S.D.) and reproducibilities of 14.9%, 10.4% and 13.7% (R.S.D.) for 4-CP, 2,4-DCP and 2,4,6-TCP, respectively. Lac retained 65.8% of its initial activity after a 30-day storage period.  相似文献   

15.
Lechner ML  Somogyi MA  Biró ML 《Talanta》1966,13(4):581-587
A quantitative method for the determination of chlorophenols and chlorophenoxyacetic acids in aqueous solutions is described. The samples investigated contained 2-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol, 2,4,6-trichlorophenol and their phenoxyacetic acid derivatives. The total amount of chlorophenols is determined by spectrophotometry, the ratio of individual chlorophenols by gas chromatography and the total quantity of phenoxyacetic acids by acidimetric titration. The determinations are carried out after extraction with diethyl ether, carbon tetrachloride and petroleum ether, respectively.  相似文献   

16.
R.M. Callejon  A.M. Troncoso  M.L. Morales   《Talanta》2007,71(5):1610-2097
A complete methodology for the determination of chloroanisoles and chlorophenols in cork material is proposed. The determination is accomplished by means of a previous liquid–solid extraction followed by stir bar sorptive extraction (SBSE) coupled to gas chromatography–mass spectrometry (GC–MS). Two different liquid–solid extraction experiments were conducted and eight compounds considered (2,6-dichloroanisole, 2,4-dichloroanisole, 2,4,6-trichloroanisole, 2,4,6-trichlorophenol, 2,3,4,6-tetrachloroanisole, 2,3,4,6-tetrachlorophenol, pentachloroanisole and pentachlorophenol). From the results obtained we can conclude that high volume extraction extending extraction time up to 24 h is the best choice if we have to release compounds from the inner surfaces of cork stoppers. Recovery percentages ranged from 51% for pentachloroanisole to 81% for 2,4-dichloroanisole. This method allows the determination of an array of compounds involved in cork taint at very low levels from 1.2 ng g−1 for 2,4,6-tricholoroanisole to 23.03 ng g−1 for 2,3,4,6-tetrachlorophenol.  相似文献   

17.
The 1-octyl-3-methylimidazolium hexafluorophosphate ([C8MIM][PF6]) ionic liquid was immobilized in the pores of a polypropylene hollow fiber for hollow fiber-protected liquid-phase microextraction. Analytes including 4-chlorophenol (4-CP), 3-chorophenol (3-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP) were extracted into this ionic liquid membrane, and back extracted into 10microL sodium hydroxide acceptor solution in the lumen of the hollow fiber. Then, the acceptor solution was withdrawn into the high-performance liquid chromatography (HPLC) microsyringe connected to the hollow fiber, and directly injected into the HPLC system for analysis. Some parameters that might affect the extraction efficiency were optimized, and low detection limits (0.5microgL(-1) for 4-CP, 3-CP, DCP and 1.0microgL(-1) for TCP) were obtained. Good repeatability was achieved because of the stability of the hollow fiber-supported ionic liquid membrane. The proposed procedure was applied for direct determination of the four chlorophenols in some real water samples including groundwater, river water, wastewater and tap water. All of the four chlorophenols in these water samples were under the limits of determination, and the recoveries were in the range of 70.0-95.7% at 5microgL(-1) spiked level.  相似文献   

18.
Summary A sensitive, specific and analytically reliable method for the determination of mono-, di-, tri- and tetrachlorophenols in human urine has been elaborated. After acid hydrolysis and a simultaneous steam distillation of the urine samples, spiked with an internal standard, the chromatographically concentrated chlorophenols have been derivatized with pentafluorobenzoylchloride and analyzed by capillary gas chromatography/mass spectrometry. The detection limits for the chlorophenols ranged from 0.2 to 2.5 g/l. Using this method we were able to detect 4-MCP, 2,4-+2,5-DCP, 2,4,6-TCP, 2,4,5-TCP and 2,3,4,6-+2,3,5,6-TeCP in urine samples of a group of 258 men and women which had no known occupational contact to hazardous chemical substances. The 95 percentiles for the concentrations of these substances in the urine samples under investigation were 7.5 (4-MCP); 33.6(2,4-+2,5-DCP); 4,7 (2,4,6-TCP); 4,5 (2,4,5-TCP) and 22.2 (2,3,4,6-+2,3,5,6-TeCP) g per liter. That means, that these chlorophenols are constituents of urine of the normal population in concentrations which in part are greater than that of pentachlorophenol (PCP).  相似文献   

19.
A new microextraction technique based on ionic liquid solid-phase microextraction (IL-SPME) was developed for determination of trace chlorophenols (CPs) in landfill leachate. The synthesized ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]), was coated onto the spent fiber of SPME for extraction of trace CPs. After extraction, the absorbed analytes were desorbed and quantified using gas chromatography–mass spectrometry (GC/MS). The term of the proposed method is as ionic liquid-coated of solid-phase microextraction combined with gas chromatography–mass spectrometry (IL-SPME-GC/MS). No carryover effect was found, and every laboratory-made ionic liquids-coated-fiber could be used for extraction at least eighty times without degradation of efficiency. The chlorophenols studied were 2,4-dichlorophenol (2,4-DP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP), and pentachlorophenol (PCP). The best results of chlorophenols analysis were obtained with landfill leachate at pH 2, headspace extraction for 4 min, and thermal desorption with the gas chromatograph injector at 240 °C for 4 min. Linearity was observed from 0.1 to 1000 μg L−1 with relative standard deviations (RSD) less than 7% and recoveries were over 87%. The limit of detection (LOD) for pentachlorophenol was 0.008 μg L−1. The proposed method was tested by analyzing landfill leachate from a sewage farm. The concentrations of chlorophenols were detected to range from 1.1 to 1.4 μg L−1. The results demonstrate that the IL-SPME-GC/MS method is highly effective in analyzing trace chlorophenols in landfill leachate.  相似文献   

20.
In this work an analytical procedure based on headspace solid-phase microextraction and gas chromatography coupled with mass spectrometry (HS-SPME–GC/MS) is proposed to determine chlorophenols with prior derivatization step to improve analyte volatility and therefore the decision limit (CCα). After optimization, the analytical procedure was applied to analyze river water samples. The following analytes are studied: 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TrCP), 2,3,4,6-tetrachlorophenol (2,4,6-TeCP) and pentachlorophenol (PCP). A D-optimal design is used to study the parameters affecting the HS-SPME process and the derivatization step. Four experimental factors at two levels and one factor at three levels were considered: (i) equilibrium/extraction temperature, (ii) extraction time, (iii) sample volume, (iv) agitation time and (v) equilibrium time. In addition two interactions between four of them were considered. The D-optimal design enables the reduction of the number of experiments from 48 to 18 while maintaining enough precision in the estimation of the effects. As every analysis took 1 h, the design is blocked in 2 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号