首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 780 毫秒
1.
J Wang  A N Kawde  A Erdem  M Salazar 《The Analyst》2001,126(11):2020-2024
Magnetic bead capture has been used for eliminating non-specific adsorption effects hampering label-free detection of DNA hybridization based on stripping potentiometric measurements of the target guanine at graphite electrodes. In particular, the efficient magnetic separation has been extremely useful for discriminating against unwanted constituents, including a large excess of co-existing mismatched and non-complementary oligomers, chromosomal DNA, RNA and proteins. The new protocol involves the attachment of biotinylated oligonucleotide probes onto streptavidin-coated magnetic beads, followed by the hybridization event, dissociation of the DNA hybrid from the beads, and potentiometric stripping measurements at a renewable graphite pencil electrode. Such coupling of magnetic hybridization surfaces with renewable graphite electrode transducers and label-free electrical detection results in a greatly simplified protocol and offers great promise for centralized and decentralized genetic testing. A new magnetic carbon-paste transducer, combining the solution-phase magnetic separation with an instantaneous magnetic collection of the bead-captured hybrid, is also described. The characterization, optimization and advantages of the genomagnetic label-free electrical protocol are illustrated below for assays of DNA sequences related to the breast-cancer BRCA1 gene.  相似文献   

2.
A novel gold nanoparticle-based protocol for detection of DNA hybridization based on a magnetically trigged direct electrochemical detection of gold quantum dot tracers is described. It relies on binding target DNA (here called DNA1) with Au(67) quantum dot in a ratio 1:1, followed by a genomagnetic hybridization assay between Au(67)-DNA1 and complementary probe DNA (here called DNA2) marked paramagnetic beads. Differential pulse voltammetry is used for a direct voltammetric detection of resulting Au(67) quantum dot-DNA1/DNA2-paramagnetic bead conjugate on magnetic graphite-epoxy composite electrode. The characterization, optimization, and advantages of the direct electrochemical detection assay for target DNA are demonstrated. The two main highlights of presented assay are (1) the direct voltammetric detection of metal quantum dots obviates their chemical dissolution and (2) the Au(67) quantum dot-DNA1/DNA2-paramagnetic bead conjugate does not create the interconnected three-dimensional network of Au-DNA duplex-paramagnetic beads as previously developed nanoparticle DNA assays, pushing down the achievable detection limits.  相似文献   

3.
Nanoparticle-based electrochemical DNA detection   总被引:2,自引:0,他引:2  
Joseph Wang   《Analytica chimica acta》2003,500(1-2):247-257
Nanoscale architectures of DNA-linked particle networks are attractive for electrical detection of DNA hybridization. This article reviews a variety of new nanoparticle/polynucleotide assemblies for advanced electrical detection of DNA sequences. Recent activity has led to innovative and powerful nanoparticle-based electrochemical DNA hybridization assays based on a variety of detection schemes. Such protocols rely on the use of colloidal gold tags, semiconductor quantum dot tracers, polymeric carrier (amplification) beads, or magnetic (separation) beads. Particularly useful have been protocols based on capturing of metal nanoparticle tracers followed by dissolution and anodic-stripping voltammetric measurement of the metal tag. Remarkable sensitivity is achieved by coupling particle-based amplification units and various amplification processes. The use of nanoparticle tracers for designing multi-target electrochemical coding protocols will also be documented.  相似文献   

4.
Electrochemical monitoring of DNA hybridization related to p53 gene sequence was investigated using genomagnetic assay combined with single walled carbon nanotube (SWCNT) modified pencil graphite electrodes (PGEs). The hybridization was performed either at magnetic beads (MB) surface or in solution. The enhanced guanine signal was obtained using SWCNT‐PGEs compared to one obtained by unmodified PGEs. The selectivity of genomagnetic assay was tested under optimum conditions. The DLs were calculated as 0.88 µM and 0.11 µM for hybridization performed at MB surface and solution, respectively. This selective, practical and cost effective genomagnetic assay combined with SWCNT‐PGEs is reported herein for the first time.  相似文献   

5.
A magnetic triggering of a solid-state electrical transduction of DNA hybridization is described. Positioning of an external magnet below the thick-film electrode attracts the DNA/particle network and enables the solid-state electrochemical stripping detection of the silver tracer. TEM imaging indicates that the hybridization event results in a three-dimensional aggregate structure in which duplex segments link the metal nanoparticles and magnetic spheres, and that most of this assembly is covered with the silver precipitate. This leads to a direct contact of the metal tag with the surface (in connection to the magnetic collection) and enables the solid-state electrochemical transduction (without prior dissolution and subsequent electrodeposition of the metal), using oxidative dissolution of the silver tracer. No such aggregates (and hence magnetic "collection") are observed in the presence of noncomplementary DNA, that is, without the linking hybrid. The new method couples high sensitivity of silver-amplified assays with effective discrimination against excess of closely related nucleotide sequences (including single-base imperfections). Such direct electrical detection of DNA/metal-particle assemblies can bring new capabilities to the detection of DNA hybridization, and could be applied to other bioaffinity assays.  相似文献   

6.
Wang J  Kawde AN 《The Analyst》2002,127(3):383-386
A new protocol is described for amplifying label-free electrochemical measurements of DNA hybridization based on the enhanced accumulation of purine nucleobases in the presence of copper ions . Such electrical DNA assays involve hybridization of the target to inosine-substituted oligonucleotide probes (captured on magnetic beads), acidic dipurinization of the hybrid DNA, and adsorptive chronopotentiometric stripping measurements of the free nucleobases in the presence of copper ions. Both amplified adenine and guanine peaks can be used for detecting the DNA hybridization. The dramatic signal amplification advantage of this type of detection has been combined with efficient magnetic removal of non-complementary DNA, use of microliter sample volumes and disposable transducers. Factors influencing the signal enhancement were assessed and optimized. A detection limit of 40 fmol (250 pg) was obtained with 10 min hybridization and 5 min adsorptive-accumulation times. The advantages of this procedure were demonstrated by its application in the detection of DNA segments related to the BRCA1 breast cancer gene. The copper enhancement holds great promise not only for the detection of DNA hybridization, but also for trace measurement of nucleic acids.  相似文献   

7.
Up to now, the development of the electrochemical DNA hybridization sensors relied on solid electrodes, on which both the hybridization and detection steps have been performed. Here we propose a new method in which the DNA hybridization is performed at commercially available magnetic beads and electrochemical detection on detection electrodes (DE). Due to minimum nonspecific DNA adsorption at the magnetic beads, very high specificity of the DNA hybridization is achieved. Optimum DE can be chosen only with respect to the given electrode process. It is shown that high sensitivity and specificity in the detection of relatively long target DNAs can be obtained (a) by using cathodic stripping voltammetry at mercury or solid mercury amalgam DEs for the determination of purine bases, released from DNA by acid treatment, and (b) by enzyme-linked immunoassay of target DNA modified by osmium tetroxide,2,2'-bipyridine (Os,bipy) at carbon DEs. Direct determination of Os,bipy at mercury and carbon electrodes is also possible.  相似文献   

8.
We report on the detection of DNA hybridization in connection to cadmium sulfide nanoparticle tracers and electrochemical stripping measurements of the cadmium. A nanoparticle-promoted cadmium precipitation is used to enlarge the nanoparticle tag and amplify the stripping DNA hybridization signal. In addition to measurements of the dissolved cadmium ion we demonstrate solid-state measurements following a ‘magnetic’ collection of the magnetic-bead/DNA-hybrid/CdS-tracer assembly onto a thick-film electrode transducer. The new protocol combines the amplification features of nanoparticle/polynucleotides assemblies and highly sensitive stripping potentiometric detection of cadmium, with an effective magnetic isolation of the duplex. The low detection limit (100 fmol) is coupled to good reproducibility (RSD=6%). Prospects for using binary inorganic colloids for multi-target detection are discussed.  相似文献   

9.
Fan A  Lau C  Lu J 《The Analyst》2008,133(2):219-225
A sensitive chemiluminescent (CL) detection of sequence-specific DNA has been developed by taking advantage of a magnetic separation/mixing process and the amplification feature of colloidal gold labels. In this protocol, the target oligonucleotides are hybridized with magnetic bead-linked capture probes, followed by the hybridization of the biotin-terminated amplifying DNA probes and the binding of streptavidin-coated gold nanoparticles; the nanometer-sized gold tags are then dissolved and quantified by a simple and sensitive luminol CL reaction. The proposed CL protocol is evaluated for a 30-base model DNA sequence, and the amount as low as 0.01 pmol of DNA is determined, which exhibits a 150 x enhancement in sensitivity over previous gold dissolution-based electrochemical formats and an enhancement of 20 x over the ICPMS detection. Further signal amplification is achieved by the assembly of biotinylated colloidal gold onto the surface of streptavidin-coated polystyrene beads. Such amplified CL transduction allows detection of DNA targets down to the 100 amol level, and offers great promise for ultrasensitive detection of other biorecognition events.  相似文献   

10.
11.
Here we present a highly sensitive, rapid and simple electrochemical assay of RNase based on coupling magnetic separation of the enzymatically treated RNA with stripping potentiometric detection of the purine nucleobases. A detection limit of 1×10?8 U RNase (ca. 4 pg/mL) is obtained in connection to a 60 min enzymatic digestion. The attractive performance of this direct indicator‐free electrochemical assay offers great promise for a wide range of molecular biology and water quality applications.  相似文献   

12.
Wang J  Kawde AN  Musameh M 《The Analyst》2003,128(7):912-916
The preparation and attractive performance of carbon-nanotube modified glassy-carbon (CNT/GC) electrodes for improved detection of purines, nucleic acids, and DNA hybridization are described. The surface-confined multiwall carbon-nanotube (MWCNT) facilitates the adsorptive accumulation of the guanine nucleobase and greatly enhances its oxidation signal. The advantages of CNT/GC electrodes are illustrated from comparison to the common unmodified glassy carbon, carbon paste and graphite pencil electrodes. The dramatic amplification of the guanine signal has been combined with a label-free electrical detection of DNA hybridization. Factors influencing the enhancement of the guanine signal are assessed and optimized. The performance characteristics of the amplified label-free electrochemical detection of DNA hybridization are reported in connection to measurements of nucleic-acid segments related to the breast-cancer BRCA1 gene.  相似文献   

13.
In most of the currently developed electrochemical DNA hybridization sensors short single-stranded probe DNA is immobilized on an electrode and both the hybridization and detection steps are carried out on the electrode surface. Here we use a new technology in which DNA hybridization is performed on commercially available magnetic beads and detection on solid electrodes. Paramagnetic Dynabeads Oligo(dT)25 (DBT) with covalently bound (dT)25 probe are used for the hybridization with target DNA containing adenine stretches. Target DNA is modified with osmium tetroxide,2,2′-bipyridine (Os,bipy) and the immunogenic DNA-Os,bipy adduct is determined by the enzyme-linked immunoassay with electrochemical detection. Electroinactive 1-naphthyl phosphate is used as a substrate and the electroactive product (1-naphthol) is measured on the carbon electrodes. Alternatively Os,bipy-modified target DNA can be determined directly by measuring the osmium signal on the pyrolytic graphite electrode (PGE). A comparison between determinations of the 67-mer oligodeoxynucleotide on carbon electrodes using (a) the guanine oxidation signal, (b) direct determination of the DNA-Os,bipy adduct and (c) its electrochemical immunoassay showed immunoassay to be the most sensitive method. In combination with DBT, the DNA hybridization of long target deoxyoligonucleotides (such as 67- and 97-mers) and a DNA PCR product (226-base pairs) have been detected by immunoassay at high sensitivity and specificity.  相似文献   

14.
Considerable efforts have been devoted to the development of rapid and sensitive methods allowing the detection of viral nucleic acid. We herein describe an assay for identification of a specific influenza sequence. The suggested method was based on isolation using paramagnetic particles coupled with electrochemical detection of isolated product. Peptide nucleic acid (PNA) was used as a probe for hybridization and identification of the influenza-derived specific sequence. The use of PNA can show numerous benefits: PNA probe is not degradable by enzymes and the duplex of PNA with RNA/DNA is more thermostable and more resistant to pH changes than DNA/DNA or RNA/RNA duplexes. This PNA probe assay can be applied as a magnetically guidable tool for detection of DNA/RNA samples under different conditions.  相似文献   

15.
Krejcova  Ludmila  Nguyen  Hoai Viet  Hynek  David  Guran  Roman  Adam  Vojtech  Kizek  Rene 《Chromatographia》2014,77(21):1425-1432

Considerable efforts have been devoted to the development of rapid and sensitive methods allowing the detection of viral nucleic acid. We herein describe an assay for identification of a specific influenza sequence. The suggested method was based on isolation using paramagnetic particles coupled with electrochemical detection of isolated product. Peptide nucleic acid (PNA) was used as a probe for hybridization and identification of the influenza-derived specific sequence. The use of PNA can show numerous benefits: PNA probe is not degradable by enzymes and the duplex of PNA with RNA/DNA is more thermostable and more resistant to pH changes than DNA/DNA or RNA/RNA duplexes. This PNA probe assay can be applied as a magnetically guidable tool for detection of DNA/RNA samples under different conditions.

  相似文献   

16.
Rapid and accurate detection of genetic mutations based on nanotechnology would provide substantial advances in detection of polycystic kidney disease (PKD), a disease whose current methods of detection are cumbersome due to the large size and duplication of the mutated gene. In this study, a nanotechnology-based DNA assay was developed for detection of SNPs (single nucleotide polymorphisms) in a feline autosomal dominant PKD (ADPKD) model which can readily be adapted to diagnosis of human ADPKD type 1. Europium and terbium phosphors were doped into gadolinium crystal hosts with a magnetic core, providing stable luminescence and the possibility of magnetic manipulations in a solution-based assay. A hybridization-in-solution DNA assay was optimized for feline PKD gene SNP detection using genomic DNA extracted from feline kidney tissue and blood. This assay showed a substantial differentiation between PKD and control specimens. The nanotechnology-based DNA assay is attractive from the viewpoint of rapid availability, simple methodology, and cost reduction for clinical use to detect mutations involved in human ADPKD and other genetic diseases. Figure Schematic diagram of PKD (Polycystic Kidney Disease) SNPs detection assay using feline genomic DNA in magnetic/luminescent nanoparticle-based DNA hybridization  相似文献   

17.
Nucleic-acid hybridization assays based on the use of different inorganic-colloid (quantum dots) nanocrystal tracers for the simultaneous electrochemical measurements of multiple DNA targets are described. Three encoding nanoparticles (zinc sulfide, cadmium sulfide, and lead sulfide) are used to differentiate the signals of three DNA targets in connection to stripping-voltammetric measurements of the heavy metal dissolution products. These products yield well-defined and resolved stripping peaks at -1.12 V (Zn), -0.68 V (Cd), and -0.53 V (Pb) at the mercury-coated glassy-carbon electrode (vs Ag/AgCl reference). The position and size of these peaks reflect the identity and level of the corresponding DNA target. The multi-target detection capability is coupled to the amplification feature of stripping voltammetry (to yield femtomole detection limits) and with an efficient magnetic removal of nonhybridized nucleic acids to offer high sensitivity and selectivity. The protocol is illustrated for the simultaneous detection of three DNA sequences related to the BCRA1 breast-cancer gene in a single sample in connection to magnetic beads bearing the corresponding oligonucleotide probes. The new electrochemical coding is expected to bring new capabilities for DNA diagnostics, and for bioanalysis, in general.  相似文献   

18.
本文基于磁性粒子(MB)良好的分离、富集能力,研究了硫化铜纳米粒子标记的流动注射-化学发光(FI-CL)DNA检测体系.通过硫化铜标记的探针1与目标DNA及连有磁球的探针2形成三明治结构,实现对目标DNA的捕获、分离与标记;通过其溶解释放出CuS标记颗粒的铜离子,引起化学发光信号增强,实现了目标DNA序列的定性定量检测.该方法对完全互补单链DNA(ssDNA)检测的线性范围为1.0×10-11~1.6×10-9 mol/L,检出限为3.0×10-12 mol/L,对1.0×10-9 mol/L目标DNA测定的相对标准偏差为3.2%(n=11),对目标碱基序列具有良好的识别能力.  相似文献   

19.
Yi Liang  Guo-Li Shen 《Talanta》2007,72(2):443-449
A novel, highly selective DNA hybridization assay has been developed based on surface-enhanced Raman scattering (SERS) for DNA sequences related to HIV. This strategy employs the Ag/SiO2 core-shell nanoparticle-based Raman tags and the amino group modified silica-coated magnetic nanoparticles as immobilization matrix and separation tool. The hybridization reaction was performed between Raman tags functionalized with 3′-amino-labeled oligonucleotides as detection probes and the amino group modified silica-coated magnetic nanoparticles functionalized with 5′-amino-labeled oligonucleotides as capture probes. The Raman spectra of Raman tags can be used to monitor the presence of target oligonucleotides. The utilization of silica-coated magnetic nanoparticles not only avoided time-consuming washing, but also amplified the signal of hybridization assay. Additionally, the results of control experiments show that no or very low signal would be obtained if the hybridization assay is conducted in the presence of DNA sequences other than complementary oligonucleotides related to HIV gene such as non-complementary oligonucleotides, four bases mismatch oligonucleotides, two bases mismatch oligonucleotides and even single base mismatch oligonucleotides. It was demonstrated that the method developed in this work has high selectivity and sensitivity for DNA detection related to HIV gene.  相似文献   

20.
A new SU-8 based microchip capillary electrophoresis (MCE) device has been developed for the first time with integrated electrochemical detection. Embedded electrophoretic microchannels have been fabricated with a multilayer technology based on bonding and releasing steps of stacked SU-8 films. This technology has allowed the monolithic integration in the device of the electrochemical detection system based on platinum electrodes. The fabrication of the chips presented in this work is totally compatible with reel-to-reel techniques, which guarantee a low cost and high reliability production. The influence of relevant experimental variables, such as the separation voltage and detection potential, has been studied on the SU-8 microchip with an attractive analytical performance. Thus, the effective electrical isolation of the end-channel amperometric detector has been also demonstrated. The good performance of the SU-8 device has been proven for separation and detection of the neurotransmitters, dopamine (DA) and epinephrine (EP). High efficiency (30,000-80,000 N/m), excellent precision, good detection limit (450 nM) and resolution (0.90-1.30) has been achieved on the SU-8 microchip. These SU-8 devices have shown a better performance than commercial Topas (thermoplastic olefin polymer of amorphous structure) microchips. The low cost and versatile SU-8 microchip with integrated platinum film electrochemical detector holds great promise for high-volume production of disposable microfluidic analytical devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号