首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of the hydration-hydrolysis processes in the 3CaO. SiO(2)-H(2)O system is studied by X-ray diffraction in presence of varying contents of a new plasticizer, belonging to the lignosulphonates class. The influence of the additives upon these processes with increasing time is observed and it is shown to depend on the nature and content of the additives and the reaction time. This influence of the additives on the kinetics of the hydration-hydrolysis processes, retardation or acceleration, is due to the strong adsorption of these admixtures on the surface of the anhydrous or partially hydrated particles of the system. The influence of the additives also appears during the development of the formed hydrocompounds according to structure and composition. As a result of these complex actions provided in the forming system (3CaO. SiO(2)-H(2)O), the mechanical strength is favorized mainly by certain proportions of plasticizer admixtures (0.1% LSC and 2% ADCOM).  相似文献   

2.
We report vertical detachment energy (VDE) and IR spectra of Br2.-.(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2.-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150 K. A linear relationship is obtained for VDE versus (n+3)(-1/3) and bulk VDE of Br2.- aqueous solution is calculated as 10.01 eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by approximately 0.5 eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by approximately 6.4 eV. Calculated IR spectra show that the formation of Br2.--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2.-.(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.  相似文献   

3.
以γ-Al2O3为载体采用分步浸渍法制备了不同Ca O含量的Cu/B/Ca/Al2O3催化剂,并测试了其催化醋酸仲丁酯加氢制备仲丁醇的反应性能.Ca O含量对催化剂的结构、氧化还原性能、酸碱性和金属铜分散度的影响分别采用XRD、H2-TPR、XPS、NH3-TPD和N2O-H2氧化还原滴定实验进行分析.结果表明,适量氧化钙的引入对金属铜的分散度无明显影响,过量的氧化钙(20%)降低催化剂的比表面积,进而导致金属铜分散度的降低;但钙作为给电子助剂能够补偿电子从铜向氧化硼之间的迁移,提高催化剂的酯加氢活性.同时,氧化钙的引入能够有效消除Cu/B/Ca/Al2O3催化剂表面的强酸性位点并降低催化剂的酸量,减少醋酸仲丁酯加氢反应中酸催化副产物以及催化剂表面积碳的生成.  相似文献   

4.
The constant ionization potential for hydrated sodium clusters Na(H2O)n just beyond n=4, as observed in photoionization experiments, has long been a puzzle in violation of the well-known (n+1)(-1/3) rule that governs the gradual transition in properties from clusters to the bulk. Based on first principles calculations, a link is identified between this puzzle and an important process in solution: the reorganization of the solvation structure after the removal of a charged particle. Na(H2O)n is a prototypical system with a solvated electron coexisting with a solvated sodium ion, and the cluster structure is determined by a balance among three factors: solute-solvent (Na+-H2O), solvent-solvent (H2O-H2O), and electron-solvent (OH{e}HO) interactions. Upon the removal of an electron by photoionization, extensive structural reorganization is induced to reorient OH{e}HO features in the neutral Na(H2O)n for better Na+-H2O and H2O-H2O interactions in the cationic Na+(H2O)n. The large amount of energy released, often reaching 1 eV or more, indicates that experimentally measured ion signals actually come from autoionization via vertical excitation to high Rydberg states below the vertical ionization potential, which induces extensive structural reorganization and the loss of a few solvent molecules. It provides a coherent explanation for all the peculiar features in the ionization experiments, not only for Na(H2O)n but also for Li(H2O)n and Cs(H2O)n. In addition, the contrast between Na(H2O)n and Na(NH3)n experiments is accounted for by the much smaller relaxation energy for Na(NH3)n, for which the structures and energetics are also elucidated.  相似文献   

5.
The structure and surface chemistry of crystalline beta-Ga2O3 nanoribbons (NRs), deposited in a thin layer on various metallic and dielectric substrates (mainly on Au), have been characterized using vibrational spectroscopy. The results have been analyzed with the aid of a previous ab initio theoretical model for the beta-Ga2O3 surface structure. Raman spectra and normal-incidence infrared (IR) transmission data show little if any difference from corresponding results for bulk single crystals. For a layer formed on a metallic substrate, IR reflection-absorption spectroscopy (IRRAS) shows longitudinal-optic (LO) modes that are red-shifted by approximately 37 cm-1 relative to those of a bulk crystal. Evidence is also seen for a bonding interaction at the Ga2O3/Au interface following heating in room air. Polarization-modulated IRRAS has been used to study the adsorption of pyridine under steady-state conditions in ambient pressures as high as approximately 5 Torr. The characteristic nu19b and nu8a modes of adsorbed pyridine exhibit little or no shift from the corresponding gas-phase values. This indicates that the surface is only weakly acidic, consistent with the theoretical prediction that singly unsaturated octahedral Ga sites are the only reactive cation sites on the NR surface. However, evidence for adsorption at defect sites is seen in the form of more strongly shifted modes that saturate in intensity at low pyridine coverage. The effect of H atoms, formed by thermal cracking of H2, has also been studied. No Ga-H or O-H bonds are observed on the pristine NR surface. This suggests that the previously reported presence of such species on Ga2O3 powders heated in H2 is a result of a partial reduction of the oxide surface. The heat of adsorption of atomic H on the pristine beta-Ga2O3(100) surface at 0 K is computed to be -1.79 eV per H at saturation (average of Ga-H and O-H sites), whereas a value of +0.45 eV per H is found for the dissociative adsorption of H2. This suggests that rapid recombinative desorption of H2 may limit the coverage of chemisorbed H on this surface.  相似文献   

6.
The hydrated phases of the system CaO---Al2O3---SO3---SiO2 were studied, and the effect of the presence of varying amounts of CaO on the hydrated phases was also investigated. These phases were assessed by the aid of differential thermal analysis (DTA) and X-ray diffractometry. They hydration kinetics of the pastes under study were followed by the determination of the chemically combined water.

Results revealed that 1 mole of CaO in excess reacts with the available SiO2 and initiates the formation of sulphoaluminate hydrates. As the CaO is increased, the amount of such hydraulic phases is increased and, accordingly, the rate of hydration enhanced. The addition of 2 moles of CaO results in the formation of appreciable amounts of ettringite among the sulphoaluminate hydrates, but some anhydrous forms still exist. On the other hand, 4 moles give better formation of the hydraulic phases and some excess Ca(OH)2 is also detected.  相似文献   


7.
Mono- and bilayer adsorption of H2O molecules on TiO2 and SnO 2 (110) surfaces has been investigated using static planewave density functional theory (PW DFT) simulations. Potential energies and structures were calculated for the associative, mixed, and dissociative adsorption states. The DOS of the bare and hydrated surfaces has been used for the analysis of the difference between the H2O interaction with TiO2 and SnO 2 surfaces. The important role of the bridging oxygen in the H2O dissociation process is discussed. The influence of the second layer of H2O molecules on relaxation of the surface atoms was estimated.  相似文献   

8.
Individual Mg(NO3)2 aerosol particles deposited on a quartz substrate were investigated by confocal Raman spectroscopy. With decreasing the relative humidity (RH) from 92.0% to 1.8%, Raman spectra were obtained of Mg(NO3)2 droplets with water-to-solute molar ratios (WSRs) from 43.1 to 5.2, as well as of amorphous particles. At WSR < 6.0, contact ion pairs between Mg2+ and NO3(-) occurred abundantly, while at RHs of 2.2% and 1.8% with even lower WSRs, amorphous particles appeared with quasi-lattice structures. Two components, one at 3259.0 cm(-1) (C1) and the other at approximately 3480.0 cm(-1) (C2), were resolved for the water O-H stretching envelope through nonlinear curve fittings. The area ratio of C1 to C2, that is, A1/A2, declined with the decrease of WSR, reflecting the breakage of strong hydrogen bonds induced by the hydration of NO3(-). Curve fittings were also carried out for the water O-H stretching envelope of NaNO3 droplets. The value of A1/A2 for Mg(NO3)2 droplets was always higher than that for NaNO3 droplets at the same WSR, indicating a much stronger "structure-making" effect of Mg2+ than of Na+. In the efflorescence process, aerosol particles followed different paths of phase transition from droplets to Mg(NO3)2.6H2O or amorphous states. Reversing somewhat the phase transitions in the efflorescence process, aerosol particles dissolved into droplets with the increase of RH in the deliquescence process. Heterogeneous particles prepared by dehydrating Mg(NO3)2.6H2O were investigated by the depth profiling technique. About 15 h later, the main body of particles changed into Mg(NO3)2.2H2O, a small quantity of Mg(NO3)2.6H2O scattered around particle edges, and some particles were in amorphous states. About 10 days later, a new solid phase occurred on particle surfaces, while the interiors were still Mg(NO3)2.2H2O. With increasing the RH to approximately 11%, significant Mg(NO3)2.6H2O formed on particle surfaces, covering the interior Mg(NO3)2.2H2O.  相似文献   

9.
We have examined the thermodynamics and kinetics of hydroxide (OH-) ions that formed in cages of 12 CaO x 7 Al2O3 (C12A7) with nanoporous structures. It is confirmed using thermogravimetric-evolved gas analyses (TG-EGA) that hydration in C12A7 is mediated by a reaction between an oxide (O2-) ion in the cage and an H2O molecule in the atmosphere to form two OH- ions in the cages. To simply and exactly quantify the OH- content from infrared absorption measurements of OH-stretching band, we propose a method combined with a thermodynamic analysis, allowing the simultaneous determination of the molar extinction coefficient of the OH-band, enthalpy, and entropy for the hydration. Hydration enthalpy in C12A7 is extremely high compared with other oxides and was enhanced by the marked instability of O2- ion in the cage. Consequently, high solubility of OH- ion is retained up to unusually high temperatures. Furthermore, we determined diffusion coefficients of species relevant to the hydration process and demonstrated that inward diffusion of OH- ions is the rate-determining process.  相似文献   

10.
To achieve a systematic understanding of the influence of microsolvation on the electron accepting behaviors of nucleobases, the reliable theoretical method (B3LYP/DZP++) has been applied to a comprehensive conformational investigation on the uracil-water complexes U-(H(2)O)(n) (n = 1, 2, 3) in both neutral and anionic forms. For the neutral complexes, the conformers of hydration on the O2 of uracil are energetically favored. However, hydration on the O4 atom of uracil is more stable for the radical anions. The electron structure analysis for the H-bonding patterns reveal that the CH...OH(2) type H-bond exists only for di- and trihydrated uracil complexes in which a water dimer or trimer is involved. The electron density structure analysis and the atoms-in-molecules (AIM) analysis for U-(H(2)O)(n) suggest a threshold value of the bond critical point (BCP) density to justify the CH...OH(2) type H-bond; that is, CH...OH(2) could be considered to be a H-bond only when its BCP density value is equal to or larger than 0.010 au. The positive adiabatic electron affinity (AEA) and vertical detachment energy (VDE) values for the uracil-water complexes suggest that these hydrated uracil anions are stable. Moreover, the average AEA and VDE of U-(H(2)O)(n) increase as the number of the hydration waters increases.  相似文献   

11.
添加碱金属对甲烷与空气制合成气的催化剂性能的影响   总被引:3,自引:1,他引:3  
考察了添加在镍基催化剂中的碱金属助剂 ,对甲烷与空气制合成气的催化反应性能的影响 ;并用 TPO、TPR、CO2 程序升温脱附 (TPD)、XPS及 CO脉冲色谱技术 ,对催化剂进行了表征 .实验表明 ,碱金属助剂对降低催化剂结炭有一定的作用 ,催化剂的抗积炭性能为 Ni- K2 O/Ca O- Al2 O3>Ni- L i2 O/Ca O- Al2 O3>Ni- Na2 O/Ca O-Al2 O3>Ni/Ca O- Al2 O3.在实验中发现 ,碱金属的添加 ,可使催化剂的 Ni比表面积变小、吸附 CO2 的能力增强 ,且结合能可发生不同程度的改变 .从而解释了碱土金属助剂对催化剂活性和抗积炭性的影响 .实验显示 ,Ni-L i2 O/Ca O- Al2 O3具有较好的活性和抗积炭性能  相似文献   

12.
In this paper the structures of 4-aminophenol(H2O)1+ and 3-aminophenol(H2O)1+ clusters are investigated in molecular beam experiments by different IR/UV-double resonance techniques as well as the mass analyzed threshold ionization spectroscopy yielding both inter- and intramolecular vibrations of the ionic and neutral species. Possible structures are extensively calculated at the level of density functional theory (DFT) or at the ab initio level of theory. From the experimental and theoretical investigations it can be concluded that in the case of 4-aminophenol(H2O)1 one O-H...O hydrogen-bonded structure exists in the neutral cluster but two structures containing either an O-H...O or a N-H...O hydrogen-bonded arrangement are observed in the spectra of the ionic species. This observation is a result of an intramolecular rearrangement reaction within the ion which can only take place if high excess energies are used. A reaction path via the CH bonds is calculated and explains the experimental observations. In the case of 3-aminophenol(H2O)1+ only one O-H...O bound structure is observed both in the neutral and ionic species. Ab initio and DFT calculations show that due to geometrical and energetical reasons a rearrangement cannot be observed in the 3-aminophenol(H2O)1+ cluster ion.  相似文献   

13.
The authors report theoretical results on structure, bonding, energy, and infrared spectra of iodine dimer radical anion hydrated clusters, I(2) (-).nH(2)O (n=1-8), based on a systematic study following density functional theory. Several initial guess structures are considered for each size cluster to locate minimum energy conformers with a Gaussian 6-311++G(d,p) split valence basis function (triple split valence 6-311 basis set is applied for iodine). It is observed that three different types of hydrogen bonded structures, namely, symmetrical double hydrogen bonding, single hydrogen bonding, and interwater hydrogen bonding structures, are possible in these hydrated clusters. But conformers having interwater hydrogen bonding arrangements are more stable compared to those of double or single hydrogen bonded structures. It is also noticed that up to four solvent H(2)O units can reside around the solute in interwater hydrogen bonding network. At the maximum six H(2)O units are independently linked to the dimer anion having four double hydrogen bonding and two single hydrogen bonding, suggesting the hydration number of I(2) (-) to be 6. However, conformers having H(2)O units independently linked to the iodine dimer anion are not the most stable structures. In all these hydrated clusters, the odd electron is found to be localized over two I atoms and the two atoms are bound by a three-electron hemi bond. The solvation, interaction, and vertical detachment energies are calculated for all I(2) (-).nH(2)O clusters. Energy of interaction and vertical detachment energy profiles show stepwise saturation, indicating geometrical shell closing in the hydrated clusters, but solvation energy profile fails to show such behavior. A linear correlation is observed between the calculated energy of interaction and vertical detachment energy. It is observed that formation of I(2) (-)-water cluster induces significant shifts from the normal O-H stretching modes of isolated H(2)O. However, bending mode of H(2)O remains insensitive to the successive addition of solvent H(2)O units. Weighted average energy profiles and IR spectra are reported for all the hydrated clusters based on the statistical population of individual conformers at room temperature.  相似文献   

14.
The Dion-Jacobson series of triple-layered perovskite tantalates (MCa2Ta3O10, M = Cs, Na, H, and C6H13NH3) were synthesized to evaluate their photocatalytic activity for overall water splitting to evolve H2/O2 under UV irradiation. The photocatalytic activity was susceptible to the hydration of interlayer space. The hydrous Na phase exhibited much higher activity (H2: 308 micromol.h(-1)) compared to the anhydrous Cs phase (24 micromol.h(-1)) and the hydrous H phase (22 micromol.h(-1)) in the presence of 0.5 wt % Ni impregnated. H2O/D2O isotopic experiment suggested that the hydrated interlayer plays as an active site for water splitting, where the high mobility of water molecule in the interlayer should correlate with the total photocatalytic activity. The FLAPW electronic structure calculation demonstrated that the terminating oxygen site, O4, which faces to the interlayer space, contributes largely to the top of the valence band. Judging from comparison with the double-layered tantalates, MLaTa2O7, in our previous study, the contribution of terminating oxygen site to the band structure is supposed to depend on the number of perovskite layers.  相似文献   

15.
The structure of the dichloride hexahydrate cube, [Cl(2)(H(2)O)(6)](2-), as a salt with the tris(diisopropylamino)cyclopropenium cation, [C(3)(N(i)Pr(2))(3)](+), has been determined by low-temperature X-ray and neutron-diffraction studies. H atoms not involved in O-HCl bonding are disordered over two 0.5 occupancy sites around the O(6) ring. Calculations of the dianionic cube in the gas phase show remarkably good agreement with the solid-state structures with the exception of short O-H bond distances around the O(6) ring that suggests the involvement of a dynamic process. The cluster was also characterised by single-crystal infrared spectroscopy, and vibrational wavenumbers were found to be in good agreement with hydrogen bonding distances. Dibromide and difluoride hexahydrates were also studied theoretically, and OO distances were found to decrease in the order difluoride > dichloride > dibromide > (H(2)O)(6) and as OOO angles increased towards an almost planar ring in (H(2)O)(6). NMR spectra of a chloroform solution of the hydrated salt at -25 °C is consistent with cluster formation.  相似文献   

16.
    
The development of the hydration-hydrolysis processes in the 3CaOSiO2-H2O system is studied by X-ray diffraction in presence of varying contents of a new plasticizer, belonging to the lignosulphonates class. The influence of the additives upon these processes with increasing time is observed and it is shown to depend on the nature and content of the additives and the reaction time. This influence of the additives on the kinetics of the hydration-hydrolysis processes, retardation or acceleration, is due to the strong adsorption of these admixtures on the surface of the anhydrous or partially hydrated particles of the system. The influence of the additives also appears during the development of the formed hydrocompounds according to structure and composition. As a result of these complex actions provided in the forming system (3CaOSiO2-H2O), the mechanical strength is favorized mainly by certain proportions of plasticizer admixtures (0.1% LSC and 2% ADCOM).  相似文献   

17.
We present the results of a detailed study on structure and electronic properties of hydrated cluster Cl2*-.nH2O (n = 1-7) based on a nonlocal density functional, namely, Becke's [J. Chem. Phys. 98, 1372 (1993)] half and half hybrid exchange-correlation functional with a split valence 6-311++G(d,p) basis function. Geometry optimizations for all the clusters are carried out with various possible initial guess structures without any symmetry restriction. Several minimum energy structures (conformers) are predicted with a small difference in total energy. There is a competition between the binding of solvent H2O units with Cl2*- dimer radical anion directly through ion-molecule interaction and forming interwater hydrogen-bonding network in Cl2*-.nH2O (n > or = 2) hydrated cluster. Structure having interwater H-bonded network is more stable over the structure where H2O units are connected to the solute dimer radical anion Cl2*- rather independently either by single or double H bonding in a particular size (n) of hydrated cluster Cl2*-.nH2O. At the maximum four solvent H2O units reside in interwater H-bonding network present in these hydrated clusters. It is observed that up to six H2O units are independently linked to the anion having four double H bondings and two single H bondings suggesting the primary hydration number of Cl2*- to be 6. In all these clusters, the odd electron is found to be mostly localized over the two Cl atoms and these two atoms are bound by a three-electron hemibond. Calculated interaction (between solute and different water clusters) and vertical detachment energy profiles show saturation at n = 6 in the hydrated cluster Cl2*-.nH2O (n = 1-7). However, calculated solvation energy increases with the increase in number of solvent H2O molecules in the cluster. Interaction energy varies linearly with vertical detachment energy for the hydrated clusters Cl2*-.nH2O (n < or = 6). Calculation of the vibration frequencies show that the formation of Cl2*(-)-water clusters induces significant shifts from the normal stretching modes of isolated water. A clear difference in the pattern of IR spectra is observed in the O-H stretching region of water from hexa- to heptahydrated cluster.  相似文献   

18.
CO加氢反应机理一直是许多化学工作者感兴趣的课题.Rh催化剂因其优良的性能而被用于 CO加氢机理研  相似文献   

19.
Dehydration of oximes and amides to nitriles was carried out using the AlCl(3) x 6H(2)O/KI/H(2)O/CH(3)CN system. It produced isoquinoline derivatives 8a-c (Bischler Naperialski reaction) when reacted with amides 7a-c in hydrated media. Also, the keto oximes produced anilides (Beckmann rearrangement) with the system under the same reaction conditions.  相似文献   

20.
Shivaiah V  Das SK 《Inorganic chemistry》2005,44(24):8846-8854
Two Anderson-type heteropolyanion-supported copper phenanthroline complexes, [Al(OH)6Mo6O18[Cu(phen)(H2O)2]2]1+ (1c) and [Al(OH)6Mo6O18[Cu(phen)(H2O)Cl]2]1- (1a) complement their charges in one of the title compounds [Al(OH)6Mo6O18[Cu(phen)(H2O)2]2][Al(OH)6Mo6O18[Cu(phen)(H2O)Cl]2].5H2O [1c][1a].5 H2O 1. Similar charge complementarity exists in the chromium analogue, [Cr(OH)6Mo6O18[Cu(phen)(H2O)2]2][Cr(OH)6Mo6O18[Cu(phen)(H2O)Cl]2].5 H2O [2c][2a].5 H2O 2. The chloride coordination to copper centers of 1a and 2a makes the charge difference. In both compounds, the geometries around copper centers are distorted square pyramidal and those around aluminum/chromium centers are distorted octahedral. Three lattice waters, from the formation of intermolecular O-H.....O hydrogen bonds, have been shown to self-assemble into an "acyclic water trimer" in the crystals of both 1 and 2. The title compounds have been synthesized in a simple one pot aqueous wet-synthesis consisting of aluminum/chromium chloride, sodium molybdate, copper nitrate, phenanthroline, and hydrochloric acid, and characterized by elemental analyses, EDAX, IR, diffuse reflectance, EPR, TGA, and single-crystal X-ray diffraction. Both compounds crystallize in the triclinic space group P. Crystal data for 1: a = 10.7618(6), b = 15.0238(8), c = 15.6648(8) angstroms, alpha = 65.4570(10), beta = 83.4420(10), gamma = 71.3230(10), V = 2182.1(2) angstroms3. Crystal data for 2: a = 10.8867(5), b = 15.2504(7), c = 15.7022(7) angstroms, alpha = 64.9850(10), beta = 83.0430(10), gamma = 71.1570(10), V = 2235.47(18) angstroms3. In the electronic reflectance spectra, compounds 1 and 2 exhibit a broad d-d band at approximately 700 nm, which is a considerable shift with respect to the value of 650-660 nm for a square-pyramidal [Cu(phen)2L] complex, indicating the coordination of [M(OH)6Mo6O18]3- POM anions (as a ligand) to the monophenanthroline copper complexes to form POM-supported copper complexes 1c, 1a, 2c, and 2a. The ESR spectrum of compound 1 shows a typical axial signal for a Cu2+ (d9) system, and that of compound 2, containing both chromium(III) and copper(II) ions, may reveal a zero-field-splitting of the central Cr3+ ion of the Anderson anion, [Cr(OH)6Mo6O18]3-, with an intense peak for the Cu2+ ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号