首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Tetradecylferrocene (4, Fc-(CH2)13CH3) was synthesized via lithiation of ferrocene by treatment with tert-butyl lithium, followed by alkylation with 1-bromotetradecane. Complex 4 forms a physisorbed ordered molecular monolayer on the surface of highly oriented pyrolytic graphite (HOPG) that was analyzed by scanning tunneling microscopy (STM). It features a lamellar structure with single rows of ferrocenyl moieties separating connecting areas formed by the long alkyl chains which are arranged parallel to each other. The ordering principle of 4 on the surface can be related to the arrangement of Fc-(CH2)13CH3 molecules in the three-dimensional crystal lattice.  相似文献   

2.
C. Su  C. -R. Shu  C. -C. Wu 《Liquid crystals》2002,29(9):1169-1176
Scanning tunnelling microscopy is used to analyse the structure of the columnar metallomesogen bis[1-(3',4',5'-trioctyloxyphenyl)-3-(4'-octyloxphenyl)prop [Pd(II)BPOC8], on the basal plane of highly oriented pyrolytic graphite. It is observed with near molecular level resolution that adsorbed molecules form a regular two-dimensional (2D) arrangement on the surface. The intermolecular spacing in the 2D crystallization is significantly shorter than in the intercolumnar mesophase, indicating that the alkyl chains of adjacent molecules interdigitate. Change in the carbon length of alkyl side chain groups results in a change in molecular periodicity in the 2D crystal. Models for the unit cell are proposed based on computer simulation.  相似文献   

3.
C. Su  C.-R. Shu  C.-C. Wu 《Liquid crystals》2013,40(9):1169-1176
Scanning tunnelling microscopy is used to analyse the structure of the columnar metallomesogen bis[1-(3′,4′,5′-trioctyloxyphenyl)-3-(4′-octyloxphenyl)prop [Pd(II)BPOC8], on the basal plane of highly oriented pyrolytic graphite. It is observed with near molecular level resolution that adsorbed molecules form a regular two-dimensional (2D) arrangement on the surface. The intermolecular spacing in the 2D crystallization is significantly shorter than in the intercolumnar mesophase, indicating that the alkyl chains of adjacent molecules interdigitate. Change in the carbon length of alkyl side chain groups results in a change in molecular periodicity in the 2D crystal. Models for the unit cell are proposed based on computer simulation.  相似文献   

4.
Regardless of the absence of alkyl chains and conventional hydrogen bonding sites as well as its small size, 2,6-diethynylpyridine forms an ordered array at the interface between 1-phenyloctane and highly oriented pyrolytic graphite (HOPG) under room temperature conditions, as revealed by scanning tunneling microscopy. We propose a model for the superperiodic molecular arrangement with reference to the bulk crystal structure, in which the surface pattern is governed by weak C-H...N and C-H...pi hydrogen bonds as well as the periodic potential of the underlying graphite surface.  相似文献   

5.
Tripod-type molecules with long alkyl chains, 1,1,1-tris(4-alkoxyphenyl)ethanes with octadecyloxy or docosyloxy chains, self-assemble into two-dimensional crystallites on drop-casting onto the surface of highly oriented pyrolytic graphite. In the two-dimensional crystalline domain, the molecules are organized in a mortise-and-tenon motif, as revealed by scanning tunneling microscopy. The time evolution of the crystallite formation has been followed by the dynamic force mode atomic force microscopy. The tripods may be used as a basis for the extension of a two-dimensional order into three-dimensional molecular architectures.  相似文献   

6.
An arrangement for the long alkyl side chains in a Langmuir–Blodgett (LB) film from regioselectively alkylated 2,3-di-O-octadecylcellulose on an Au-coated substrate was investigated using Fourier transform infrared reflection absorbance spectroscopy. The IR results indicated that the hydrophobic long alkyl side chains were forced to be repellent to the surface of water, resulting in deposition on the substrate, with it being tilted in the vertical direction, and further formed both hexagonal and orthorhombic crystalline structures up to 10 layers in the LB film. In addition, molecular modeling with CAChe software indicated that the optimized assembly of the side chains was supposed to own a vertical arrangement against the substrate surface after compression of the monolayer. This means that the conformation of 21 screw of the cellulose molecular chain may be altered by the compression to have an unusual conformation by a different φ–ψ dihedral angle such as onefold axis without a symmetry element.  相似文献   

7.
Micellization of a series of newly synthesized dialkyl benzene sulfonates was studied using proton chemical shift changes, spin-lattice and spin-spin relaxation NMR spectroscopy, and two-dimensional nuclear Overhauser enhancement spectroscopy (2D NOESY). The o-substituted chains are normal alkyl chains with varying lengths, and the m-substituted ones are branched alkyl chains. The results showed that the longer the o-substituted normal alkyl chain, the more the methylene groups participated in the formation of the rigid surface layers of the hydrophobic micellar cores. Consequently, the larger was the area per molecule adsorbed on the interface between oil and water at saturation. The branched m-substituted alkyl chains of the dialkyl benzene sulfonates were less tightly packed than the o-substituted normal alkyl chains in the hydrophobic micellar cores. The shorter the m-substituted branched alkyl chains, the looser they were packed in the hydrophobic micellar cores. The relative arrangement of the surfactant molecules in the micelles was elucidated.  相似文献   

8.
Microscopic structures of room temperature ionic liquid (IL) [bmim][PF6] on hydrophobic graphite surfaces have been studied in detail by molecular dynamics simulation. It is clearly shown that both the mass and electron densities of the surface adsorbed ionic liquid are oscillatory, and the first peak adjacent to the graphite surface is considerably higher than others, corresponding to a solidlike IL bottom layer of 6 angstroms thick. Three IL layers are indicated between the graphite surface and the inner bulk IL liquid. The individually simulated properties of single-, double-, and triple-IL layers on the graphite surface are very similar to those of the layers between the graphite surface and the bulk liquid, indicating an insignificant effect of vapor-IL interface on the ordered IL layers. The simulation also indicates that the imidazolium ring and butyl tail of the cation (bmim+) of the IL bottom layer lie flat on the graphite surface.  相似文献   

9.
The chiral organization of an enantiopure functional molecule on an achiral surface has been studied with the aim of understanding the influence of stereogenic centers on the self-assembly in two dimensions. A chiral tetra meso-amidophenyl-substituted porphyrin containing long hydrophobic tails at the periphery of the conjugated pi-electron system was prepared for this purpose. Scanning tunneling microscopy (STM) images of the compound at the graphite-heptanol interface reveal a chiral arrangement of the molecules, with the porphyrin rows tilted by 13 degrees with respect to the normal to the graphite axes. In terms of molecular modeling, a combination of molecular dynamics simulations on systems constrained by periodic boundary conditions and on unconstrained large molecular aggregates has been applied to reach a quantitative interpretation on both the density of the layer and its orientation with respect to the graphite surface. The results show clearly that (i) the methyl groups of the stereogenic point toward the graphite surface and (ii) the porphyrin molecules self-assemble into an interdigitated structure where the alkyl chains align along one of the graphite axes and the porphyrin cores are slightly shifted with respect to one another. The direction of this shift, which defines the chirality of the monolayer, is set by the chirality of the stereogenic centers. Such an arrangement results in the formation of a dense chiral monolayer that is further stabilized by hydrogen bonding with protic solvents.  相似文献   

10.
At the liquid/graphite interface triangular and rhombic phenylene-ethynylene macrocycles substituted by alkyl chains self-assemble to form porous two-dimensional (2D) molecular networks of honeycomb and Kagomé types, respectively, or close-packed non-porous structures via alkyl chain interdigitation as the directional intermolecular linkages. Factors that affect the formation of the 2D molecular networks, such as alkyl chain length, solvent, solute concentration, and co-adsorption of guest molecules, were elucidated through a systematic study. For the porous networks, various molecules and molecular clusters were adsorbed in the pores reflecting the size and shape complementarity, exploring a new field of 2D host-guest chemistry.  相似文献   

11.
The concentration effect on a two‐dimensional (2D) self‐assembly of 4, 4′‐dihexadecyloxy‐benzophenon (DHB) has been investigated by scanning tunneling microscopy. The self‐assembly of DHB at the phenyloctane/graphite interface was concentration dependent. Under low concentration, the DHB molecules were adsorbed intactly on the graphite surface. With the increasing of concentration, one of side chains connecting the conjugated moiety stretched into the liquid phase. The coexistence of two self‐assembled structures was observed in a moderate concentration. The result indicated that the van der Waals interactions between the molecules and the graphite lattice were decreasing with the increasing concentration. After the samples were placed in ambient conditions over 24 h, a different self‐assembled structure was obtained on the gas/solid interface, in which the DHB molecules were adsorbed on the surface with only one of the side chains. Both the benzophenon core and the other side chain were extended to the gas phase. The results demonstrated that concentration played an important role in forming the 2D molecular self‐assembly and provided an efficient approach for the control of the DHB molecular nanostructure. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
We show here by means of scanning tunneling microscopy (STM) at the liquid/solid interface that paracetamol and benzocaine molecules bearing a long aliphatic chain can be immobilized on highly oriented pyrolitic graphite (HOPG) as perfectly ordered two-dimensional domains extending over several hundreds of nanometers. In both cases, high-resolution STM images reveal that compounds 1 and 2 self-assemble into parallel lamellae having a head-to-head arrangement. The paracetamol heads of 1 are in a zigzag position with entangled n-dodecyloxy side chains while benzocaine heads of compound 2 are perfectly aligned as a double row and have their palmitic side chains on either sides of the head alignment. We attribute the very long-range ordering of these two pro-drug derivatives on HOPG to the combined effects of intermolecular H-bonding on one side and Van der Waals interactions between aliphatic side chains and graphite on the other side. The 2D immobilization of pro-drug derivatives via a non-destructive physisorption mechanism could prove to be useful for applications such as drug delivery if it can be realized on a biocompatible substrate.  相似文献   

13.
Amphiphilic discotic molecules with hydrophilic side branches consisting of hexaphenyl hexa-peri-hexabenzocoronene and hexabiphenyl hexa-peri-hexabiphenylcoronene as the aromatic core and hexa-substituted oligoethers as the branched peripheral chains have been synthesized, and their microstructure has been characterized. The discotic molecules based on dibranched oligoether side chains have been observed to self-organize into a well-ordered hexagonal columnar structure within liquid crystalline phases, which possessed an exceptionally high thermal stability and an unusually wide temperature range over >300 degrees C. We suggest that a combination of the large lateral dimensions of the rigid cores and disordered structure of the oxygen-containing branches tails is a driving force to the formation of a highly ordered columnar structure in the bulk state with enhanced molecular segregation. In contrast to the thermotropic phase behavior that favors the formation of highly ordered columnar aggregates through a strong stacking interaction, the hexabenzocoronene cores are packed in a face-on arrangement at the air/water interface and on solid surfaces with surface domains composed of an array of 7 x 7 molecules. We suggest a crablike molecular conformation and cluster-segregated monolayers with 6-fold symmetry and unusual face-on packing on a solid surface. Preliminary spectroscopic studies in the bulk state have shown that the molecules based on a hexaaromatic-substituted core may serve as functional supramolecular materials with high energy transfer characteristic within the columns due to near-perfect columnar ordering, which is unchanged over a wide temperature range. We believe that an absence of the crystallization phenomenon of side-branched oligoether chains is critical for the formation of long-range columnar ordering with strong intracolumnar correlation of conjugated disks important for high carrier mobility.  相似文献   

14.
Iridium(III) fac-tris(2-phenylpyridine) fac-[Ir(ppy)3] complexes equipped with long alkyl chains were prepared to examine their capability to form organized arrays on the surface of highly oriented pyrolytic graphite (HOPG). The molecules form lamellar arrays at the 1-phenyloctane/HOPG interface. From the analysis of the STM images, it was concluded that the molecules align with alkyl chains being interdigitated. Similar lamellar arrays were also obtained at the air/HOPG interface upon drop-casting of toluene solutions. The lamellar structure at the molecular level leads to rectangular two-dimensional crystalline domains a few hundred nanometers long (nanoslips). Infrared external reflection spectroscopy suggested that the adsorbed alkyl chains adopt the trans-zigzag conformation in the nanoslip, although the orientations of the zigzag plane of the alkyl groups are mixed. Cyclic voltammetry indicates fast electron transfer between the adsorbed molecules and the substrate and significant intermolecular electronic interactions. It was found that annealing at high temperatures is an effective method to prepare ordered assemblies more than a few micrometer scale (microslips). The orientations of the nanoslips prepared from the racemic mixture exhibited an apparent 12-fold symmetry, while its optically active enantiomer resulted in more irregular domains with a six-fold symmetry, implying an important role of chirality on packing at the molecular level and on the orientation of the domains at larger scales. When drop-cast from more concentrated solutions than a few hundreds of micromolar, multilayers were obtained, in which the alkyl chains in the molecules are more or less perpendicular to the surface. This structure can be transformed into the nanoslips upon standing.  相似文献   

15.
We use a systematic approach that combines experimental X-ray diffraction (XRD) and computational modeling based on molecular mechanics and two-dimensional XRD simulations to develop a detailed model of the molecular-scale packing structure of poly(2,5-bis (3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene) (PBTTT-C(14)) films. Both uniaxially and biaxially aligned films are used in this comparison and lead to an improved understanding of the molecular-scale orientation and crystal structure. We then examine how individual polymer components (i.e., conjugated backbone and alkyl side chains) contribute to the complete diffraction pattern, and how modest changes to a particular component orientation (e.g., backbone or side-chain tilt) influence the diffraction pattern. The effects on the polymer crystal structure of varying the alkyl side-chain length from C(12) to C(14) and C(16) are also studied. The accurate determination of the three-dimensional polymer structure allows us to examine the PBTTT electronic band structure and intermolecular electronic couplings (transfer integrals) as a function of alkyl side-chain length. This combination of theoretical and experimental techniques proves to be an important tool to help establish the relationship between the structural and electronic properties of polymer thin films.  相似文献   

16.
The molecular arrangement and chirality of the self-assembled arachidic anhydride monolayer on graphite were investigated using scanning tunneling microscopy (STM). This molecule has two identical alkyl chains, linked by an anhydride group in the middle. In its extended form, one alkyl chain is shifted, with respect to the other, along the molecular backbone. Upon adsorption on graphite, this achiral anhydride spontaneously forms two types of homogeneous domains (denoted as m and m') with mirror symmetry. The angle from the molecular chain to the row-packing direction is 98.0 degrees +/- 0.5 degrees and 82.0 degrees +/- 0.5 degrees for domains m and m', respectively. Domain m is the mirror image of m'. The molecular arrangement of this self-assembled monolayer shows that domains m and m' are two-dimensional enantiomers with opposite chiralities. This new molecular packing motif is confirmed by line-profile analyses along the molecule-chain and the row-packing directions. This finding demonstrates the spontaneous formation of highly ordered homogeneous enantiomorphous domains on graphite resulting only from weak van der Waals forces between the achiral arachidic anhydride molecules.  相似文献   

17.
We present an investigation of thin polymer layers formed by either strong adsorption or end grafting on a surface or an interface. Depending on the kind of surface attachment, different internal organisations of the chains are observed: either polydisperse loops for adsorbed layers, or almost monodisperse tails in the case of grafting. The molecular parameters of the layer (length and surface density of anchored chains) and the molecular organisation inside the layer govern the ability of the surface anchored chains to be swollen by a good solvent or to penetrate into a bulk polymer, either a melt or a cross-linked elastomer, three properties which have been characterised through neutrons reflectivity techniques. We then analyse how the ability of the surface anchored chains to penetrate into a bulk polymer, entangle with it, and then be deformed when this bulk polymer is mechanically solicitated, are key parameters which govern adhesion and friction properties.  相似文献   

18.
利用扫描隧道显微镜研究了荧光液晶分子2, 5-二-[2-(3, 4-二-十二烷氧基-苯基)-乙烯基]-3, 6-二甲基吡嗪(BPDP12)在石墨表面上自组装单层膜的结构. 实验结果表明, 该化合物在石墨表面形成两种自组装结构:一种是稳定的, 分子的共轭中心相互平行, 烷基链相互交错的密排结构;另一种是不稳定的, 分子的共轭中心彼此为烷基链所分隔的非密排结构. 分子之间较强的π-π作用和分子烷基链之间的范德华作用力对分子组装的取向形成竞争, 是产生两种不同组装结构的根本原因.  相似文献   

19.
The polar alignment layer (AL) surface provided relatively small liquid crystal (LC) pretilt angles while polyimides with long alkyl side chains gave relatively large LC pretilt angles. The results suggest that LC pretilt angles, in addition to an anchoring effect, are greatly affected by both electronic and steric interactions between LC molecules and a polyimide alignment layer surface. Rubbing with a cotton cloth induces functional groups, side chains, and repeat units at the surface of a liquid crystal polyimide AL to re-orient. It was discovered that rubbing induced polar functional groups and repeat units to re-orient out-of-the-plane of the surface, and it made non-polar aliphatic side chains partially re-orient inwards, toward the bulk of the film.  相似文献   

20.
The ordering of three different sizes of quaternary ammonium salts (QUATs) has been studied with respect to concentration of guests in the host's interlayer gallery. From the modeling, we could verify that small molecules of n-butylammonium salt build a monolayer structure in the vermiculite gallery without reference to concentration. On the other hand, the larger molecules of dodecyltrimethylammonium and dioctadecyldimethylammonium salts are responsive to the numbers of their molecules in the interlayer space of the host, building mono- or bilayered structures. Supersaturated structure of both QUATs keep an arrangement of alkyl chains nearly perpendicular to silicate layers, while only saturated samples exhibit tilted alkyl chains in the gallery. The ordering changes bring out the calculation of mean crystallite size. Low values of the nonbond energy of supersaturated forms predict that those organovermiculites will readily exfoliate, e.g., in polymer/clay nanocomposite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号