首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoelectron spectroscopy has been explored as a tool to measure the flattening of the phosphorus pyramid in a phosphole as caused by a large, sterically demanding P-substituent. Earlier PE spectra had shown no difference in ionization energies (IE) for simple phospholes and their tetrahydro derivatives (both around 8.0-8.45 eV). Calculations of the Koopmans IE at the Hartree-Fock 6-31G level for 1-methylphospholane showed that, as is known for nitrogen, planarization at phosphorus markedly reduced the ionization energy value (8.74 to 6.29 eV). A reduction in IE also occurred on planarizing 1-methylphosphole, but to a lesser extent, being offset by increased electron delocalization (8.93 to 7.16 eV). This suggests that experimental comparison of IE for the unsaturated and saturated systems could be used to detect the presence of electron delocalization in the former. The IE experimentally determined for the crowded 1-(2,4-di-tert-butyl-6-methylphenyl)-3-methylphosphole was 7.9 eV, the lowest ever recorded for a phosphole. The corresponding phospholane had IE 7.55 eV. The difference in the values is attributed to electron delocalization in the phosphole. Calculations performed on the related model 1-(2-tert-butyl-4,6-dimethylphenyl)phosphole showed that the P-substituent adopted an angle of 55.7 degrees (DFT/6-31G level; 57.6 degrees at the HF/6-31 level) with respect to the C(2)-P-C(5) plane (for P-phenyl, 67.1 degrees and 68.3 degrees, respectively).  相似文献   

2.
A phosphole‐fused porphyrin dimer, as a representative of a new class of porphyrins with a phosphorus atom, was synthesized for the first time. The porphyrin dimer exhibits remarkably broadened absorption, indicating effective π‐conjugation over the two porphyrins through the phosphole moiety. The porphyrin dimer possesses excellent electron‐accepting character, which is comparable to that of a representative electron‐accepting material, [60]PCBM. These results provide access to a new class of phosphorus‐containing porphyrins with unique optoelectronic properties.  相似文献   

3.
Further studies have been conducted on the condensation of electron-rich arenes or heteroarenes with the dienic system of phosphole P-complexes. According to the X-ray crystal structure analysis of one of the resulting 2-aryl-3-phospholene P-complexes, the condensation takes place on the side of the diene opposite to the complexing group. The decomplexation of the phospholene P–Mo(CO)5 and P–W(CO)5 complexes, respectively, by reaction with sulfur or halogens and tertiary amines yields the corresponding P-sulfides and oxides with full retention of the stereochemistry at phosphorus. Double condensation of the phosphole P-complexes onto the 2 and 5 positions of thiophene and furan ultimately leads to phosphole–thiophene–phosphole and phosphole–furan–phosphole chains. The first type has been characterized by X-ray crystal structure analysis of its P,P-disulfide. No electronic delocalization appears to take place along the chain.  相似文献   

4.
We have studied the photochemistry of 1,4-bis(2-[4-tert-butylperoxycarbonylphenyl]ethynyl)benzene (1) and tert-butyl 4-(2-{4-[2-(4-phenyloxycarbonylphenyl)-1-ethynyl]phenyl}-1-ethynyl)peroxybenzoate (2). Excitation of 1 and 2 by a 355-nm laser pulse leads to the rapid formation of aroyloxyl radicals. An unpaired electron conjugated with the phenylene-ethynylene core is substantially delocalized over the pi-system of the chromophore. The -CC- vibrational frequencies of these radicals are red-shifted relative to 1 and 2 as measured by time-resolved IR spectroscopy. This shift is attributed to the change in the triple bond character due to delocalization of the free electron.  相似文献   

5.
The sterically crowded 1-(2,4-di-tert-butyl-6-methylphenyl)-3-methylphosphole was synthesized by dehydrohalogenation of the corresponding 3,4-dibromophospholane, in order to probe the possibility that the steric congestion would cause some flattening of the phosphorus pyramid and an increase in electron delocalization. The phosphole was a recrystallizable solid with (31)P NMR delta 1.8. Semiempirical calculations indicated that the pyramidal shape was retained but was noticeably flatter than in 1-phenylphosphole. In the low energy conformation, the phosphole and phenyl ring planes are approximately orthogonal, with the 2-tert-butyl group in the less crowded position that is syn to the lone pair on phosphorus. The 6-methyl group is positioned under the phosphole ring. This conformational prediction was amply confirmed by several chemical shift and coupling effects in the (13)C NMR spectrum. The (1)H NMR spectrum displayed an unusually large four-bond coupling (6 Hz) of (31)P to the m-phenyl proton syn to the lone pair (and none to the anti-meta proton), consistent with the orthogonal conformation. The oxide of the phosphole showed more stability than that of less crowded phospholes and gave a (31)P NMR signal that was detectable over a several hour period at room temperature. The oxide proceeded to give the usual Diels-Alder dimer and also formed a cycloadduct with N-phenylmaleimide. The phosphoryl group of the latter was reduced with trichlorosilane to give the phosphine. This new 7-phosphanorbornene derivative gave the most downfield (31)P NMR shift (delta 153.3) of any member of this family, all of which are characterized by remarkable deshielding in the syn isomer.  相似文献   

6.
Carbon, nitrogen and oxygen NMR spectra of some nitro derivatives of pyrrole and imidazole have been investigated. The 13C chemical shifts of para-carbons and the 17O chemical shifts of the nitro group correlate qualitatively with the electron densities on these carbon and oxygen atoms, which in turn depend upon the degree of conjugation of the nitro groups with the heterocyclic ring. Conjugation of several nitro groups with the benzene ring is in most cases not impaired by mutual interactions and the 13C shifts show good additivity. Such additivity is much worse in pyrrole and imidazole derivatives. Taken together with the diamagnetic nature of these deviations from additivity, this leads to a possible conclusion about the less pronounced conjugation of the nitro groups with the heterocyclic ring in heterocyclic dinitro derivatives.  相似文献   

7.
2,3-Diphenylbutadiene and its donor-acceptor functionalized derivatives represent branched pi systems consisting of three overlapping linearly conjugated units, namely a 1,3-butadiene and two phenylethene subsystems. The evaluation of pi conjugation using a scheme based on the natural bond orbital analysis shows that the details of the structure of these compounds is governed by electron delocalization. The potential energy surface of 2,3-diphenylbutadiene shows two minima, each one representing a distinct combination of conjugation patterns. These minima are shown to be connected by a low-energy path with transition structures that have one conjugation path fully activated, while conjugation is completely disrupted along the other path. We will show that, in response to donor-accptor functionalization, the 2,3-diphenylbutadiene backbone will switch to other conformations, which come along with substantial changes in the electronic structure.  相似文献   

8.
Abstract

Pentacarbonylphospholemetal(0) and cis-tetracarbonylbis(phosphole)metal(0) complexes were synthesized from the thermal reaction of M(CO)3(THF) and M(CO)4(COD) (M: Cr, Mo, W) with corresponding phosphole (1-phenyl-3,4-dimethylphosphole, 1-phenyl-3-methylphosphole, and 1-phenylphosphole). These complexes were isolated as orange crystals by column chromatography on silicagel at 253 K and crystallization from n-hexane at 223 K and characterized by means of IR and NMR (1H, 13C, and 31P). Spectroscopic data shows that the phosphole is coordinated to the transition metal through its phosphorus atom rather than through the conjugated diene unit in the both types of complexes. The tetracarbonylbis(phosphole)metal(0) complexes were found to have cis-arrangement of two phosphole ligands. Comparing 13C-NMR chemical shifts of the complexes with the free ligands, one can deduce that the involvement of the phosphorus atom in the ring π-electron delocalization is drastically reduced upon coordination. This is attributed to the stronger [sgrave]-donation but weaker π-accepting ability of the phosphorus atom in the phosphole ligands compared to the carbonyl groups.  相似文献   

9.
A series of perfluorophenyl‐substituted dithienophosphole derivates has been synthesized. Investigation of their photophysical properties, as well as their organization in the solid state reveals that these properties can be manipulated via introduction of bromine substituents in 2,6‐position of the dithienphosphole scaffold, as well as the complexation of the phosphorus center with an electron rich gold(I) fragment. The strongly electron‐withdrawing character of the perfluorophenyl‐group surmounts the effect of the oxidation of the phosphorus center with respect to photophysics, leading to leading to optoelectronic features similar to those of the trivalent phosphole species. The trivalent phosphole species. The solid‐state organization of the members of this perfluorinated dithienophosphole family, on the other hand, strongly depends on the heteroatoms present within the system, as close intermolecular interactions can be observed between varieties of different atoms (Au‐Au, Br‐Br, Br‐O, Br‐C, F‐C, O‐S), next to regular C‐C π‐stacking interactions.  相似文献   

10.
Relations between aromaticity indices derived from chemical graph theory and those based on 6-center electron delocalization are investigated for a series of polybenzenoid hydrocarbons. Aromatic stabilization obtained by means of the effective scaled electron delocalization is highly correlated to the resonance energy, RE, obtained both from SCF MO calculations and conjugated ring circuits model. Local aromaticity of benzene rings is discussed using two different criteria, in one of them aromaticity is just given by the cyclic pi-electron conjugation of the ring, whereas terms involving more than one ring are also considered in the other one. Indices derived from chemical graph theory and those obtained from the 6-center electron delocalization give rise to the same local aromaticity. Moreover, 6-center electron delocalization provides more quantitative information.  相似文献   

11.
A divergent method for the synthesis of α,α′‐diarylacenaphtho[1,2‐c]phosphole P‐oxides has been established; α,α′‐dibromoacenaphtho[c]phosphole P‐oxide, which was prepared through a TiII‐mediated cyclization of 1,8‐bis(trimethylsilylethynyl)naphthalene, underwent a Stille coupling with three different kinds of aryltributylstannanes to afford the α,α′‐diarylacenaphtho[c]phosphole P‐oxides in moderate to good yields. X‐ray crystallographic analyses and UV/Vis absorption/fluorescence measurements have revealed that the degree of π‐conjugation, the packing motif, the electron‐accepting ability, and the thermal stability of the acenaphtho[c]phosphole π‐systems are finely tunable with the α‐aryl substituents. All the P?O and P?S derivatives exhibited high stability in their electrochemically reduced state. To use this class of arene‐fused phosphole π‐systems as n‐type semiconducting materials, we evaluated device performances of the bulk heterojunction organic photovoltaics (OPV) that consist of poly(3‐hexylthiophene), an indene‐C70 bisadduct, and a cathode buffer layer. The insertion of the diarylacenaphtho[c]phosphole P‐oxides as the buffer layer was found to improve the power conversion efficiency of the polymer‐based OPV devices.  相似文献   

12.
The concepts of conjugation and hyperconjugation play an important role to provide an explanation for several fundamental phenomena observed in organic chemistry. Because these effects cannot be directly measured experimentally, their assessment became a primary concern for chemists from the very beginning. In general, the stabilization produced by both phenomena has been studied by means of isodesmic reactions and energy based analysis such as the energy decomposition analysis. In recent years, electronic delocalization measures have been successfully applied to elucidate the nature of chemical bonding and the aromatic character of all kind of molecules. Because conjugation and hyperconjugation stabilizations are strongly linked to the concept of electron delocalization, this paper will give an account of both effects from the point of view of electronic delocalization measures calculated within the framework of the quantum theory of atoms in molecules. In particular, we focus our attention in the controversial case of the stabilization by conjugation in 1,3-butadiyne and 1,3-butadiene. Unexpectedly, theoretical calculations based on the scheme proposed by Kistiakowsky to quantify the extent of stabilization due to conjugation predicted that the conjugation of 1,3-butadiyne was zero. Subsequent energetic analyses contradicted this observation. These studies pointed out the presence of hyperconjugation stabilization in the hydrogenated product of 1,3-butadiyne and 1,3-butadiene that were used as reference systems in the Kistiakowsky's scheme. Consequently, the extra stabilization of 1-butyne due to hyperconjugation hides the stabilization by conjugation of 1,3-butadiyne. Our results based on electron delocalization measures confirm both the presence of conjugation in 1,3-butadiene and 1,3-butadiyne and hyperconjugation stabilization in their respective hydrogenated products, 1-butene and 1-butyne.  相似文献   

13.
Abstract

Electron impact mass spectral fragmentation of a number of phosphole, phosphole oxide, phosphole selenide, and phosphole sulfide derivatives has been used as a probe for part of an on-going examination of the inherent stability, or “aromaticity” of these heterocycles. Ion current measurements and large fragment fragmentation patterns obtained from these compounds as well as from carbocyclic, and other heterocyclic analogs will be presented as one approach to determining the relative stabilities of these systems. The stability patterns obtained appear to be consistent with the relative stabilities established by other methods.  相似文献   

14.
A new concept of charge stabilization via delocalization of the pi-cation radical species over the donor macrocycle substituents in a relatively simple donor-acceptor bearing multimodular conjugates is reported. The newly synthesized multimodular systems were composed of three covalently linked triphenylamine entities at the meso position of the porphyrin ring and one fulleropyrrolidine at the fourth meso position. The triphenylamine entities were expected to act as energy transferring antenna units and to enhance the electron donating ability of both free-base and zinc(II) porphyrin derivatives of these pentads. Appreciable electronic interactions between the meso-substituted triphenylamine entities and the porphyrin pi-system were observed, and as a consequence, these moieties acted together as an electron-donor while the fullerene moiety acted as an electron-acceptor in the multimodular conjugates. In agreement with the spectral and electrochemical results, the computational studies performed by the DFT B3LYP/3-21G(*) method revealed delocalization of the frontier highest occupied molecular orbital (HOMO) over the triphenylamine entities in addition to the porphyrin macrocycle. Free-energy calculations suggested that the light-induced processes from the singlet excited state of porphyrins are exothermic in the investigated multimodular conjugates. The occurrence of photoinduced charge-separation and charge-recombination processes was confirmed by the combination of time-resolved fluorescence and nanosecond transient absorption spectral measurements. Charge-separated states, on the order of a few microseconds, were observed as a result of the delocalization of the pi-cation radical species over the porphyrin macrocycle and the meso-substituted triphenylamine entities. The present study successfully demonstrates a novel approach of charge-stabilization in donor-acceptor multimodular conjugates.  相似文献   

15.
trans-Diethynylethene [(E)-hex-3-ene-1,5-diyne (1 a)], geminal-diethynylethene [3-ethynyl-but-3-ene-1-yne (1 b)], and tetraethynylethene [3,4-diethynyl-hex-3-ene-1,5-diyne (2)] are flexible molecular building blocks for pi-conjugated polymers with interesting electronic and photonic properties. The type of functionalization, the length of the polymer chain, and the choice of pi-conjugation pattern, play a crucial role in determining the properties of these compounds. To rationalize the impact of the different delocalization pathways in the various types of isomers (trans or geminal) on the molecular and electronic structure, a detailed theoretical investigation is presented. We develop a method based on the natural bond orbital (NBO) analysis of Weinhold, which allows one to correlate electron delocalization with molecular and electronic structure observables. The method reveals that the difference between trans (or through) and geminal (or cross) conjugation is not only due to the vertical pi conjugation, but also to the in-plane sigma hyperconjugation. The method is used to correlate the changes in molecular and electronic observables, such as the bond lengths or the absorption frequencies, with the electronic structure of the compounds under investigation. Moreover, this method allows us to predict how a certain substituent will affect the molecular structure and the electronic properties of a given backbone.  相似文献   

16.
The first comprehensive study of the synthesis and structure–property relationships of 2,2′‐bis(benzo[b]phosphole)s and 2,2′‐benzo[b]phosphole–benzo[b]heterole hybrid π systems is reported. 2‐Bromobenzo[b]phosphole P‐oxide underwent copper‐assisted homocoupling (Ullmann coupling) and palladium‐catalyzed cross‐coupling (Stille coupling) to give new classes of benzo[b]phosphole derivatives. The benzo[b]phosphole–benzo[b]thiophene and ‐indole derivatives were further converted to P,X‐bridged terphenylenes (X=S, N) by a palladium‐catalyzed oxidative cycloaddition reaction with 4‐octyne through the Cβ? H activation. X‐ray analyses of three compounds showed that the benzo[b]phosphole‐benzo[b]heterole derivatives have coplanar π planes as a result of the effective conjugation through inter‐ring C? C bonds. The π–π* transition energies and redox potentials of the cis and trans isomers of bis(benzo[b]phosphole) P‐oxide are very close to each other, suggesting that their optical and electrochemical properties are little affected by the relative stereochemistry at the two phosphorus atoms. The optical properties of the benzo[b]phosphole–benzo[b]heterole hybrids are highly dependent on the benzo[b]heterole subunits. Steady‐state UV/Vis absorption/fluorescence spectroscopy, fluorescence lifetime measurements, and theoretical calculations of the non‐fused and acetylene‐fused benzo[b]phosphole–benzo[b]heterole π systems revealed that their emissive excited states consist of two different conformers in rapid equilibrium.  相似文献   

17.
The asymmetric cyclic tetrapyrrole uroporphyrinogen III is the common precursor of heme, chlorophyll, siroheme, and other biological tetrapyrroles. In vivo, it is synthesized from a linear symmetric precursor (hydroxymethylbilane) by uroporphyrinogen III synthase, which catalyzes the inversion of one of the four heterocyclic rings present in the substrate. Two mechanisms have been proposed to explain this puzzling ring inversion, either through sigmatropic shifts or through the direct formation of a spirocyclic pyrrolenine intermediate. We performed the first high-level quantum mechanical calculations on model systems of this enzyme to analyze these contrasting reaction mechanisms. The results allow us to discard the sigmatropic shift mechanism and suggest that the D-ring of the hydroxymethylbilane substrate binds to the enzyme in a conformation that shields its terminal portion from reacting with ring A and prevents the formation of the biologically useless uroporphyrinogen I, whose accumulation (in individuals lacking functional uroporphyrinogen III synthase) leads to severe cutaneous dermatosis.  相似文献   

18.
The strength and, mainly, the direction of a static electric field can be used to control delocalization effects occurring in a non-polar pi-system. The delocalization energy, the weights, and the probabilities of some local electronic structures, the behavior of electron pairs, and the electronic fluctuations are considered and examined in cis-butadiene, used as model system. The effects of the electric field are detected and evaluated in the basis of natural orbital spaces appropriate to investigate the behavior of one- and poly-electron distributions. The consequences of modifying the delocalization effects on structural changes are also investigated. Full geometry optimizations in both Hartree-Fock and MP2 levels show that the changes in bond lengths, guided by the changes of the behavior of the electronic assembly, can be controlled by means of the electric field.  相似文献   

19.
Benzo[b]phosphole derivatives have attracted significant attention for their unique optoelectronic properties with potential for application in materials science. Herein we report a modular approach to a benzo[b]phosphole derivative based on a one‐pot sequential coupling of an arylzinc reagent, an alkyne, dichlorophenylphosphine (or phosphorus trichloride and a Grignard reagent), and an oxidant (for example H2O2, S, or Se). The approach allows for the construction of a library of previously inaccessible, structurally diverse benzo[b]phosphole derivatives with unprecedented ease.  相似文献   

20.
Combined experimental and theoretical charge-density studies on free and metal-coordinated N-heterocyclic carbenes have been performed to investigate the extent of electron delocalization in these remarkable species. Tracing the orientation of the major axis of the bond ellipticity (the least negative curvature in the electron density distribution) along the complete bond paths distinguishes unambiguously between fully delocalized systems and those with interrupted cyclic electron delocalization. Evaluation of charge-density-based properties such as atomic quadrupole moments serves as a direct and quantitative measure of the extent of pi-electron delocalization and reveals consistency between theory and experiment. A detailed topological analysis of theoretical charge densities for two benchmark carbene systems, viz., 1,2-dimethylpyrazol-3-ylidene 1a and 1,3-dimethylimidazol-2-ylidene 2a, and their corresponding stable chromium pentacarbonyl complexes 1 and 2, highlights the advantages of charge-density-based criteria to analyze such complex electronic situations. Thus, 1a and 2a display a different extent of electron delocalization; yet nearly identical p(pi) occupations at the carbene center are computed for 1a and 2a. However, atomic quadrupoles Q(zz) - the charge-density analogues of p(pi) occupation - reveal faithfully the electronic differences in 1a and 2a and demonstrate the sensitivity of charge-density-based properties to the bonding situation. The acyclic aminocarbene (iPr(2)N)(2)CCr(CO)(4) has also been studied, and the high barrier to rotation about the C-N bond is shown not to arise solely from p(pi)-p(pi) bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号