首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theoretical model has been proposed for describing the relaxation of misfit stresses in a spherically symmetric composite core-shell nanoparticle due to the generation and expansion of rectangular prismatic dislocation loops at the internal and external interfaces. The critical conditions of the formation of these loops have been calculated for nanoparticles consisting of a relatively massive core and a thin shell. It has been shown that the generation of dislocation loops is possible when the misfit of the lattice parameters of the core and shell of the nanoparticle exceeds a critical value that depends on the nanoparticle radius, the shell thickness, the loop formation position, and the shape of loops. This condition holds for a loop in the shell when the shell thickness either lies in a specific range of small values or (for a larger misfit) is less than a critical value. For the generation of loops in the core, the shell thickness should exceed a critical value. The dislocation loops elongated along the core-shell interface are formed more readily. As the shell thickness increases at a fixed nanoparticle radius, the energetically more favorable generation of a dislocation loop occurs first from the free surface into the bulk of the shell, then from the interface into the shell, and finally from the interface into the core of the nanoparticle.  相似文献   

2.
The critical conditions have been calculated for the generation of circular prismatic loops of misfit dislocations at the interfaces in spherically symmetric composite core-shell nanoparticles. It has been shown that the formation of these loops becomes energetically favorable if the misfit parameter exceeds a critical value, which is determined by the geometry of the system. The most preferred position of the dislocation loop is in the equatorial plane of the nanoparticle. For a given radius of the nanoparticle, there is a minimum value of the critical misfit parameter below which the generation of a misfit dislocation is energetically unfavorable for any ratio of the core and shell radii. For a misfit parameter exceeding the minimum critical value, there are two critical values of the reduced radius of the particle core in the interval between which the generation of a dislocation loop is energetically favorable. This interval increases with increasing misfit parameter for a fixed particle size and decreases with decreasing particle size for a fixed misfit parameter.  相似文献   

3.
The shape of a coherent non-misfitting FeC precipitate formed from solute atoms that interact with a dislocation stress field was studied using kinetic Monte Carlo simulation on a rigid lattice. The system studied is a model for binary alloys with an interstitial alloying element similar to Fe–C. The interaction with the dislocation comprises both a short-range chemical term and a long-range deformation field. The effect of each of these terms on precipitate shapes for different C supersaturations was investigated. A simple analytical model is proposed to rationalize the results obtained in the atomistic simulations.  相似文献   

4.
谢红献  于涛  刘波 《物理学报》2011,60(4):46104-046104
用分子动力学方法研究了温度对镍基单晶高温合金γ/γ'相界面上错配位错运动的影响.研究结果表明:无论是在低温还是在高温下,错配位错的运动都是通过扭折的形核及扭折沿位错线的迁移来实现;在低温时错配位错的相互作用有利于错配位错的运动;然而在高温时错配位错的相互作用可以阻碍错配位错的运动,从而阻碍γ和γ'相界面的相对滑动,有利于提高镍基单晶高温合金的高温力学性能. 关键词: 镍基单晶高温合金 相界面 错配位错 分子动力学模拟  相似文献   

5.
Clusters of self-interstitial atoms are formed in metals by high-energy displacement cascades, often in the form of small dislocation loops with a perfect Burgers vector. In isolation, they are able to undergo fast, thermally activated glide in the direction of their Burgers vector, but do not move in response to a uniform stress field. The present work considers their ability to glide under the influence of the stress of a gliding dislocation. If loops can be dragged by a dislocation, it would have consequences for the effective cross-section for dislocation interaction with other defects near its glide plane. The lattice resistance to loop drag cannot be simulated accurately by the elasticity theory of dislocations, so here it is investigated in iron and copper by atomic-scale computer simulation. It is shown that a row of loops lying within a few nanometres of the dislocation slip plane can be dragged at very high speed. The drag coefficient associated with this process has been determined as a function of metal, temperature and loop size and spacing. A model for loop drag, based on the diffusivity of interstitial loops, is presented. It is tested against data obtained for the effects of drag on the stress to move a dislocation and the conditions under which a dislocation breaks away from a row of loops.  相似文献   

6.
Q.H. Fang  Y.W. Liu  P.H. Wen 《哲学杂志》2013,93(20):1585-1595
A theoretical model is proposed for elastic stress relaxation of a buried strained cylindrical inhomogeneity, which assumes the edge misfit dislocation dipole formation in the soft matrix at some distance from the interface. The critical radius of the inhomogeneity for the formation of the edge misfit dislocation dipole is given and the influence of various parameters on the critical radius is evaluated. The result indicates that the critical radius decreases with increasing misfit strain and core radius of the misfit dislocation. It is also found that, compared to the edge misfit dislocation dipole formation in the interface, the critical radius of the inhomogeneity decreases when the location of an edge misfit dislocation dipole formation is in the soft matrix at some distance from the interface.  相似文献   

7.
The nucleation and growth of interstitial loops during irradiation has a : ontrolling effect on the subsequent swelling behaviour of metals. In nickel based alloys containing ordered γ' precipitate (Ni3Al, Ti), interactions occur between the nucleated loops and γ' particles. This effect has been studied in two nickel based alloys using a High Voltage Electron Microscope.

For the case of Nimonic 80A alloy containing 18% volume fraction : gamma;' precipitate, dislocation loop-particle interactions obeyed the developed isotropic elasticity theory.2'3'12 Consequently, rather low dislocation densities were developed and the swelling resistance was high during electron irradiation. In Nimonic 115A alloy, loop nucleation and growth was dependent on the availability of interfacial dislocation surrounding the γ' particles.

With regard to the swelling behaviour of γ' hardened alloys, it : s concluded that several mechanisms contribute to make these materials resistant.

Coherency strains at the γ' particles reduce the density of : limbing dislocations.

The γ' precipitate affects the climb efficiency of the : ucleated dislocations by:

pinning the dislocation line, thus introducing a line tension force : hich opposes dislocation climb and reduces swelling;

reducing the available volume of material in which dislocation loops : an nucleate and grow.  相似文献   

8.
高愈尊 《物理学报》1984,33(6):840-844
本文用超高压透射电子显微镜研究退火的高氧含量无位错直拉硅单晶中氧沉淀和诱生缺陷。在750—1050℃范围内氧沉淀是球状的α方英石。除了球状氧沉淀粒子之外还有一些具有{001}惯习面的方片状氧沉淀物。在950℃以上沿〈110〉方向从氧沉淀发射出冲压式棱柱位错环。这些位错环的柏氏矢量为α/2〈110〉、环面法线为〈110〉,它们是间隙型的位错环。这些位错环是从方片状氧沉淀物或从球伏氧沉淀粒子的聚集团发射出来的。当它们遇到障碍物时可能产生比较复杂的位错组态。实验中观察到由于层错攀移形成的台阶。热处理温度在850℃以下时,未观察到体内层错。 关键词:  相似文献   

9.
10.
We have investigated the microstructure that occurs both inside and closely associated with dislocation cells in undoped, semi-insulating LEC GaAs. Using A/B etching, we have identified regions containing large volumes of this microstructure for examination by transmission electron microscopy. A precipitate with a possible associated dislocation loop has been observed in such a region. Cathodoluminescence and reverse contrast images show excellent agreement and demonstrate correlation between regions of high precipitate (and dislocation) density and low concentrations of particular unidentified point defects. In-situ, optical scattering imaging by A/B etched surfaces and reverse contrast absorption imaging demonstrate directly the excellent correlation between these techniques for the first time.  相似文献   

11.
A new mechanism for relaxation of misfit stresses in composite nanowires (quantum wires) is suggested and theoretically examined, namely the formation of misfit dislocation loops. The stress field of a prismatic dislocation loop in a cylinder (nanowire) is calculated. The parameters of two-phase composite nanowires at which the formation of misfit dislocation loops is energetically favourable are estimated. The effect of stress fields of dislocation loops on the formation of compositionally modulated nanowires is discussed.  相似文献   

12.
ABSTRACT

Precipitate hardening is a key strengthening mechanism in metallic alloys. Classical models for precipitate hardening are based on the average behaviour of an ensemble of precipitates, and fail to capture the complexity of dislocation-precipitate interactions that have recently been observed at individual precipitates in simulations and in-situ electron microscopy. In order to achieve tailored mechanical properties, detailed deformation mechanisms at specific precipitates that account for precipitate size, crystallography, and defect structure must be understood, but has been challenging to achieve experimentally. Here, in-situ scanning electron microscope mechanical testing is used to obtain the compressive stress–strain behaviour at an individual, incoherent Au precipitate within a Cu nanocube, and determine the influence of precipitate and cube size on yield strength and strain hardening. TEM imaging and strain mapping of the initial structure shows misfit dislocations at the Au precipitate, threading dislocations that traverse the Cu shell, and localised and anisotropic strain near the precipitate and threading dislocation. These nanocubes have yield strengths of 800–1000?MPa and strain hardening rate of 1–4?GPa. Yield strength is found to depend on the distance from the precipitate interface to the cube edge, while strain hardening depends on both cube size and precipitate size. An analytical model is developed to quantify the contribution of Orowan looping, Orowan stress, back stress and image stress to plasticity at the Au precipitate. Orowan stress is found to be the largest contributor, followed by back stress and image stress.  相似文献   

13.
Time-resolved,in-situ-applied STM has been used to study the epitaxial growth of iron on W(110) at room temperature. By this way, sequences of STM images show directly the atomistics of the growth process on the surface. The first layer of iron on W(110) grows pseudomorphically without a preferred growth direction. Beginning with the second layer, the islands grow anisotropically with preferred growth in the [001]-direction. The generation of an ordered two-dimensional dislocation network starts at a coverage of 1.4 pseudomorphic monolayers to relax the misfit of 9.4%. A direct correlation of the creation of misfit dislocations in the second layer and the nucleation of the third-layer islands was found. Together with the onset of strain relaxation, the growth mode abruptly changes from layer-by-layer to statistical growth. A quantitative statistical analysis of the data allows to exactly determine the onset of relaxation, the vertical location of the dislocation lines, and the lateral extension of an island that is necessary to induce the formation of dislocations.  相似文献   

14.
The misfit dislocation network which forms between hematite and the ilmenite matrix from which it exsolves has been studied utilizing transmission electron microscopy techniques. It has been shown that the misfit dislocation network consists of a three-fold, symmetric dislocation configuration of half partial dislocations. The measured spacings between the misfit dislocations are in good agreement with those predicted from the postulated model of the network.  相似文献   

15.
Elastic-energy relaxation in systems with nanoinclusions is considered. The relaxation is related to the formation of the following dislocation loops: a single misfit dislocation loop or a group of such loops on the matrix-nanoinclusion interface and/or a satellite dislocation loop near the inclusion. The critical inclusion sizes beginning from which misfit dislocation loops and satellite dislocation loops can nucleate are determined for various models of relaxation processes. The dependences of the satellite-dislocation-loop diameter on the inclusion size are calculated and compared with experimental data.  相似文献   

16.
A model is developed to investigate the two-dimensional interfacial misfit dislocation networks that follows the original Peierls-Nabarro idea. Structure and energies of heterophase interfaces are considered for the cubic lattice. To examine the energy contribution of misfit dislocations, where interactions between two dislocation arrays are concerned, a generalized stacking fault energy is proposed. Combined with first-principles calculations, we apply this model to a practical metal-ceramic example: the Ag/MgO(100) interface. An important correction to the adhesive energy is proposed in addition to its dislocation structure being confirmed.  相似文献   

17.
周耐根  周浪 《物理学报》2005,54(7):3278-3283
运用分子动力学方法对负失配条件下的外延铝簿膜中失配位错的形成进行了模拟研究.所采 用的原子间相互作用势为嵌入原子法(EAM)多体势.模拟结果显示:在500K下长时间静态弛豫 ,表面和内部结构完整的外延膜在9—80原子层厚度范围内(约为其热力学临界厚度的3—40 倍)均不形成失配位错,而在薄膜表面预置一个单原子层厚、三个原子直径大小的凸台或凹 坑时,失配位错则能够在15个原子层厚的外延膜上迅速形成:在动态沉积生长条件下,表面 自然形成凹凸,初始厚度为9个原子层厚的外延膜在沉积生长中迅速形成失配位错.在三种条 件下,所形成的位错均为伯格斯矢量与失配方向平行的全刃位错.分析发现:在压应力作用 下,表面微凸台诱发了其侧薄膜内部原子的挤出,造成位错形核;而表面微凹坑则直接因压 应力作用形成了一个表面半位错环核. 关键词: 外延薄膜 失配位错 分子动力学 铝  相似文献   

18.
A two-level approach has been proposed for describing the plastic deformation under high-rate loading of metals. The characteristics of the motion of dislocations under shear stresses have been investigated at the atomistic level by using the molecular dynamics simulation. The macroscopic motion of a material has been described at the continuum level with the use of the model of continuum mechanics with dislocations, which uses information obtained at the atomistic level on the dislocation dynamics. The proposed approach has been used to study the evolution of the dislocation subsystem under shock-wave loading of an aluminum target. The behavior of the dynamic yield stress with an increase in the temperature has been analyzed. The results of the calculations are in good agreement with experimental data.  相似文献   

19.
The study of single slip was performed by imitation simulation and mathematical simulation methods. In a modified barrier model of constant linear tension, all stages of the process of nucleation and propagation of single crystallographic slip to the field of discrete dislocation obstacles have been simulated and investigated. The equation of dynamics of expansion of an isolated closed planar dislocation loop, which restricts slipping, was used to perform a comparative study of the effect of the mechanisms of resistance to dislocation motion on the characteristics of the resulting single slip. Micromechanical characteristics of each dislocation loop emitted by a dislocation source after loss of stability have been calculated. The time it takes for single slip to propagate up to the barrier configurations that restrict slipping and the total formative time of the crystallographic shear zone have been estimated. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 57–68, January, 2006.  相似文献   

20.
Plastic deformation of crystalline materials is a complex nonhomogeneous process characterized by avalanches in the motion of dislocations. We study the evolution of dislocation loops using an analytically solvable phase-field model of dislocations for ductile single crystals during monotonic loading. The distribution of dislocation loop sizes is given by P(A) approximately A-sigma, with sigma=1.8+/-0.1. The exponent is in agreement with those found in acoustic emission experiments. This model also predicts a range of macroscopic behaviors in agreement with observation, including hardening with monotonic loading, and a maximum in the acoustic emission signal at the onset of yielding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号