首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The character of temperature dependences of the electric conductivity of MgB2 granular BCS superconductors at temperatures of ~35–45 K in external magnetic fields H ext of up to ~2 kOe is studied. An increase in the superconducting transition width ΔT c with an increase in Hext is found. The presence of a system of weak links in MgB2-based granular superconductors is established. On the basis of experimental data, MgB2 granular superconductor is assigned to two-level superconducting systems and the H–T phase diagram is constructed.  相似文献   

2.
We report synthesis, structure/micro-structure, resistivity under magnetic field [ρ(T)H], Raman spectra, thermoelectric power S(T), thermal conductivity κ(T), and magnetization of ambient pressure argon annealed polycrystalline bulk samples of MgB2, processed under identical conditions. The compound crystallizes in hexagonal structure with space group P6/mmm. Transmission electron microscopy (TEM) reveals electron micrographs showing various types of defect features along with the presence of 3–4 nm thick amorphous layers forming the grain boundaries of otherwise crystalline MgB2. Raman spectra of the compound at room temperature exhibited characteristic phonon peak at 600 cm-1. Superconductivity is observed at 37.2 K by magnetic susceptibility χ(T), resistivity ρ(T), thermoelectric power S(T), and thermal conductivity κ(T) measurements. The power law fitting of ρ(T) give rise to Debye temperature (ΘD) at 1400 K which is found consistent with the theoretical fitting of S(T), exhibiting Θ D of 1410 K and carrier density of 3.81 × 1028/m3. Thermal conductivity κ(T) shows a jump at 38 K, i.e., at Tc, which was missing in some earlier reports. Critical current density (Jc) of up to 105 A/cm2 in 1–2 T (Tesla) fields at temperatures (T) of up to 10 K is seen from magnetization measurements. The irreversibility field, defined as the field related to merging of M(H) loops is found to be 78, 68 and 42 kOe at 4, 10 and 20 K respectively. The superconducting performance parameters viz. irreversibility field (Hirr) and critical current density Jc(H) of the studied MgB2 are improved profoundly with addition of nano-SiC and nano-diamond. The physical property parameters measured for polycrystalline MgB2 are compared with earlier reports and a consolidated insight of various physical properties is presented.  相似文献   

3.
MgB2/Fe wires were prepared by electrical self-heating of in situ powder-in-tube wires for the first time at ambient conditions. Characterization of the wires processed at 750 °C, 800 °C and 850 °C for 15 min by XRD, SEM, ϱ–T, susceptibility and JC measurements shows that the MgB2 formed is of high quality particularly with respect to phase purity and transport JC. The method considerably reduces the overall energy consumption vis-à-vis the production cost, simplifies the complexity of the fabrication procedure and is promising for manufacture of high-quality MgB2 superconducting wires. PACS 74.70.Ad; 74.62.Bf; 74.25.Fy; 74.25.Ha; 81.20.Hy  相似文献   

4.
The effect of comparatively weak actions on the structure of the two-gap BCS superconductor MgB2 was studied. The MgB2 samples studied differed in terms of the annealing time at 900°C. It was found that the lattice parameters, residual resistivity, and critical temperature depend only weakly on the annealing time, whereas the electrical resistivity decreases by a few times when the annealing time is increased from 2 to 10 h. It is assumed that the observed effects may be caused by the influence of Mg and B atom ordering in the MgB2 lattice on charge transfer over the two-dimensional B-B σ bonds.  相似文献   

5.
Superconducting MgB2 films were obtained by in-situ annealing of precursor multilayers deposited at low substrate temperature by sputtering from a MgB2 stoichiometric target and by thermal evaporation of pure Mg. After an in-situ annealing at 500–600 °C, the films showed a zero resistance critical temperature up to 31 K. The as-obtained MgB2 films were investigated by X-ray photoelectron spectroscopy (XPS) and X-ray auger electron spectroscopy (XAES). The electronic structure was studied by monitoring the B 1s, Mg 2p, O 1s core-levels and the Mg KL2L3 Auger line. For comparison, the electronic structure of an MgB2 commercial superconducting sputtering target, of a not-annealed precursor film and of a sample obtained by direct sputtering from the MgB2 target have also been investigated. Electron spectroscopy showed that in the superconducting systems the Mg KL2L3 Auger line kinetic energy position is always higher by about 0.9 eV with respect to the energy position of the same Auger line measured in the non-superconducting samples. PACS 74.25Jb; 74.78.Bz; 74.70.Ad  相似文献   

6.
The influence of nonstoichiometry of the new high-temperature superconductor MgB2 on its critical temperature was studied by the direct magnetooptical observations of the penetration and trapping of magnetic flux. To preclude the possible influence of accidental factors, a special sample with transition from pure boron to the MgB2 with an excess of Mg was synthesized. In a narrow region near the unreacted boron, the magnetic-field trapping and screening disappear at a temperature 1.5 K higher than in the dominant stoichiometric region of the sample.  相似文献   

7.
The thermal expansion coefficient α(T) of MgB2 was measured at low temperatures both in a zero magnetic field and at H=36 kOe. As in the oxide HTSCs, a region of anomalous (negative) thermal expansion and a strong effect of magnetic field on α(T) were revealed. The results obtained indicate the anomalous properties of MgB2 and the oxide HTSCs to follow a common pattern.  相似文献   

8.
I. N. Askerzade 《Pramana》2003,61(3):611-616
Two-band Ginzburg-Landau (TB G–L) equations for a bulk MgB2 were solved analytically to determine the temperature dependence of surface critical magnetic fieldH c3 (T). It is shown thatH c3 (T) has the same temperature dependence with Hc2 (T), similar to the case of a single-band superconductor,H c3 (T) = 166H c2 (T). We use an elimination procedure for the decoupling of G–L equations of two-band superconductivity, which eases the calculations. It is expected that the temperature dependence forH c3 (T) gives positive curvature nearT c .  相似文献   

9.
This paper reports on an atomic-force microscopy study of the surface of α-Al2O3 single crystals irradiated by Bi ions with energies of 710, 557, 269, and 151 MeV. The shape of the radiation defects produced by single ions was established to depend on the ionization energy loss. The threshold ionization density above which the surface topography is observed to change lies in the 27–35 keV/nm interval. Possible mechanisms of defect formation in the thermal-spike model, namely, a phase transition and the creation of thermoelastic stresses in the high-energy ion track, are considered.  相似文献   

10.
We report measurements of the resistivity, ρ, and the Seebeck coefficient, S , of a MgB2 sintered sample, and compare S with theoretical calculations based on precise electronic structure calculations. ρ is fitted well by a generalized Bloch-Grüneisen equation with a Debye temperature Θ R of 1050 K. S is given by the sum of a diffusive and a phonon drag term and the behavior in the temperature region T c < T < 0.1Θ R follows the relationship AT+BT3. The phonon drag term indicates a strong electron-phonon interaction. The diffusive term, compared with calculations, suggests that σ bands give the main contribution to the Seebeck effect. Received 16 November 2001 and Received in final form 21 December 2001  相似文献   

11.
The electronic structure of the recently discovered superconductor SrPt2As2 with T c = 5.2 K has been calculated in the local-density approximation. Despite its chemical composition and crystal structure are somehow similar to FeAs-based high-temperature superconductors, the electronic structure of SrPt2As2 is very much different. The crystal structure is orthorhombic (or tetragonal if idealized) and has layered nature with alternating PtAs4 and AsPt4 tetrahedra slabs sandwiched with Sr ions. The Fermi level is crossed by Pt-5d states with rather strong admixture of As-4p states. Fermi surface of SrPt2As2 is essentially three-dimensional, with complicated sheets corresponding to multiple bands. We compare SrPt2As2 with 1111 and 122 representatives of FeAs-class of superconductors, as well as with isovalent (Ba,Sr)Ni2As2 superconductors. Brief discussion of superconductivity in SrPt2As2 is also presented.  相似文献   

12.
We have studied the behavior of the thermal expansion coefficient α(T) (in a zero magnetic field and at H≈4 T), the heat capacity C(T), and the thermal conductivity κ(T) of magnesium boride (MgB2) in the vicinity of Tc and at lower temperatures. It was established that MgB2, like oxide-based high-temperature superconductors, exhibits a negative thermal expansion coefficient at low temperatures. The anomaly of α(T) in MgB2 is significantly affected by the magnetic field. It was established that, in addition to the well-known superconducting transition at Tc≈40 K, MgB2 exhibits an anomalous behavior of both heat capacity and thermal conductivity in the region of T≈10–12 K. The anomalies of C(T) and κ(T) take place in the same temperature interval where the thermal expansion coefficient of MgB2 becomes negative. The low-temperature anomalies are related to the presence of a second group of charge carriers in MgB2 and to an increase in the density of the Bose condensate corresponding to these carriers at Tc2≈10–12 K.  相似文献   

13.
We report on measurements of the temperature dependence of resistivity, ρ(T), for single-crystal samples of ZrB12, ZrB2, and polycrystalline samples of MgB2. It is shown that the cluster compound ZrB12 behaves as a simple metal in the normal state, with a typical Bloch-Grüneisen ρ(T) dependence. However, the resistive Debye temperature, TR=300 K, is three times smaller than TD obtained from specific heat data. We observe the T2 term in ρ(T) of all these borides, which could be interpreted as an indication of strong electron-electron interaction.  相似文献   

14.
The specific features of the phonon spectrum of the MgB2 compound (T c = 38 K) are investigated by tunneling spectroscopy. It is demonstrated that both the position and the energy width of the fundamental optical mode E 2g in the phonon spectrum are in good agreement with inelastic X-ray spectroscopy data but differ substantially from Raman spectroscopy results. Among possible factors responsible for this discrepancy, the anharmonic and nonadiabatic effects that are characteristic of the MgB2 system are discussed.  相似文献   

15.
A detailed theoretical analysis of the experimental data obtained earlier in the studies of the tunneling spectra in the MgB2 two-band superconducting system has been performed. It is shown that most these data are well described in the generalized two-band Bardeen-Cooper-Schrieffer theory with the constants of the intraband electron-phonon interaction that reasonably coincide with the ab initio calculation results. It is shown that the existence of specific collective excitation in this system induced by oscillations of the relative phase of two superconducting condensates (the Leggett mode) indicates the overestimation of the constants of the interband electron-phonon interaction in the ab initio calculations. The dependences of the superconducting gaps and the Leggett mode frequency on the temperature and the disorder degree in the Mg1 − x Al x B2 system have been thoroughly studied.  相似文献   

16.
The possibility of preparing bicrystalline Josephson junctions and bolometers based on superconducting MgB2 on specially prepared bicrystalline MgO substrates is investigated. Microbridges 0.85–6.00 μm in width, intersecting the bicrystalline interface, are formed in epitaxial bicrystalline MgB2 films grown on these substrates. It is found that annealing of bicrystalline samples in oxygen leads to a systematic decrease in the critical current, an increase in the temperature width of the superconducting transition region, and to an improvement of the current-voltage (IV) characteristic, which becomes close in shape to the IV characteristic of a Josephson junction. The response of such a junction to radiation at a frequency of 110 GHz with an amplitude attaining 0.5 mV is measured.  相似文献   

17.
Using Scanning Tunneling Microscope at low temperature we explore the superconducting phase diagram in the π-band of the two-band superconductor MgB2. In this band the peculiar shape of the local tunneling spectra and their dynamics in the magnetic field reveal the complex character of the quasiparticle density of states (DOS). The gap in the DOS is first rapidly filled with states in raising the magnetic field up to 0.5 T and then slowly approaches the normal state value: the gap is observed up to 2 T. Such a change in the DOS dynamics suggests the existence of two terms in the DOS of the π-band: a first one, reflecting an intrinsic superconductivity in the band and a second one, originating from an inter-band coupling to the σ-band. Our findings allow a deeper understanding of the unique phase diagram of MgB2.  相似文献   

18.
The effect of internal doping of a NbTi composite wire by a large-heat-capacity substance (Gd2O2S ceramics) on the critical currents and stability against short thermal disturbances (with a typical time on the order of 1 ms) is studied experimentally and theoretically. The composite wire studied in this work is similar in design to conductors used in the international thermonuclear experimental reactor (ITER). The additive introduced into the wire in an amount of 5 vol % raises its specific heat ninefold at 4.2 K. It is found that the critical current of the (NbTi + Gd2O2S) wire increases by 8–11% in comparison with a reference NbTi wire depending on the external magnetic field varying between 5 and 7 T. Although the potential of high specific heat is not utilized completely, the critical thermal energies of the doped wires are three to four times higher than those of the undoped (reference) wires at near-critical currents.  相似文献   

19.
The temperature dependences of the specific heat C(T) and thermal conductivity K(T) of MgB2 were measured at low temperatures and in the neighborhood of T c . In addition to the well-known superconducting transition at T c ≈40 K, this compound was found to exhibit anomalous behavior of both the specific heat and thermal conductivity at lower temperatures, T≈10–12 K. Note that the anomalous behavior of C(T) and K(T) is observed in the same temperature region where MgB2 was found to undergo negative thermal expansion. All the observed low-temperature anomalies are assigned to the existence in MgB2 of a second group of carriers and its transition to the superconducting state at Tc2≈10?12 K.  相似文献   

20.
The ab initio FLAPW-GGA calculations of the band structure of a new layered low-temperature (T C ~ 2.2 K) La3Ni4P4O2 superconductor are presented. The energy bands, distributions of the densities of electron states, charge states of the atomic layers, low-temperature electron specific heat, and molar Pauli paramagnetic susceptibility for La3Ni4P4O2 have been determined. They are discussed compared to the existing experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号