首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural evolution of an amorphous Fe80B20 alloy subjected to severe plastic deformation at room temperature or at 200°C was studied. Deformation leads to the formation of α-Fe nanocrystals in an amorphous phase. After room-temperature deformation, nanocrystals are localized in shear bands. After deformation at 200°C, the nanocrystal distribution over the alloy is more uniform. Possible causes of the crystallization of the amorphous phase during severe plastic deformation are discussed.  相似文献   

2.
The structure of the Fe73.5Si13.5B9Nb3Cu1 soft magnetic alloy has been investigated using X-ray diffraction in transmission geometry. The initial alloy prepared by rapid quenching from the melt has a short-range order (∼2 nm) in the atomic arrangement, which is characteristic of the Fe-Si structure with a body-centered cubic lattice. The alloy subjected to annealing contains Fe-Si nanocrystals with sizes as large as 10–12 nm. The annealing under a tensile load leads to an extension of the nanocrystal lattice so that, after cooling, a significant residual deformation is retained. This can be judged from the relative shifts of the (hkl) peaks in the X-ray diffraction patterns measured for two orientations of the scattering vector, namely, parallel and perpendicular to the direction of the load applied. The deformation is anisotropic: within the accuracy of the experiment, no distortions in the [111] direction are observed and the distortions in the [100] direction are maximum. It is known that crystals with a composition close to Fe3Si exhibit a negative magnetostriction; i.e., their magnetization induced under a load (Villari effect) applied along the [100] direction is perpendicular to this direction along one of the easy magnetization ([010] or [001]) axes. In the alloy, the orientation of the nanocrystal axes is isotropic and the majority of the nanocrystals have a composition close to Fe3Si. The direction of magnetization of these nanocrystals is determined by the residual deformation of their lattice and lies near the plane perpendicular to the direction of the tensile load applied during heat treatment. This is responsible for the appearance of transverse magnetic anisotropy of the easy-plane type in the Fe73.5Si13.5B9Nb3Cu1 alloy.  相似文献   

3.
The possible formation of a nanocrystalline structure in controlled crystallization of a bulk Zr50Ti16Cu15Ni19 amorphous alloy has been studied using differential scanning calorimetry, transmission and high-resolution electron microscopy, and x-ray diffraction. It was established that crystallization of the alloy at temperatures above the glass formation point occurs in two stages and brings about the formation of a nanocrystalline structure consisting of three phases. Local spectral x-ray analysis identified the composition and structure of the phases formed.  相似文献   

4.
This paper reports on the spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glasses with different Tm2O3 doping concentrations (0.2, 0.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0 wt%). Mid-IR fluorescence intensities in the range of 1,300 nm−2,200 nm have been measured when excited under an 808 nm LD for all the samples with the same pump power. Energy level structure and Judd-Ofelt parameters have been calculated based on the absorption spectra of Tm3+, cross-relaxation rates and multi-phonon relaxation rates have been estimated with different Tm2O3 doping concentrations. The maximum fluorescence intensity at around 1.8 μm has been obtained in Tm2O3-3 wt% sample and the maximum value of calculated stimulated emission cross-section of Tm3+ in this sample is about 0.48 × 10−20 cm2 at 1,793 nm, and there is not any crystallization peak in the DSC curve of this sample, which indicate the potential utility of Tm3+-doped BaF2-Ga2O3-GeO2- La2O3 glass for 2.0-μm optical fiber laser.  相似文献   

5.
The electrical properties of a lithium heptagermanate (Li2Ge7O15) crystal have been studied in DC and AC measuring fields at temperatures from 500 to 700 K. In a DC field, a substantial decrease of electrical conductivity σ with time has been detected. On the basis of kinetic dependences σ(t), estimates of the charge carrier diffusion coefficient D have been obtained. In the frequency range 101–105 Hz, the spectra of complex impedance ρ*(f) have been measured. The analysis of diagrams in the complex plane (ρ″–ρ′) has been performed within the equivalent circuit approach. It has been shown that, in the considered temperature and frequency intervals, the electrical properties of Li2Ge7O15 crystals have been determined by the hopping conduction of interstitial lithium ions A Li and accumulation of charge carriers near the blocking Pt electrodes.  相似文献   

6.
A series of tungsten-tellurite glasses activated with different concentrations (0–1.5 mol %) of Er3+ has been synthesized. The structural properties of the best luminescent sample and the optical properties of its Er3+ ions, are studied both immediate after its preparation as well as after its ageing. On ageing the glass suffers structural reorganization and generates Er2WO6—nanocrystals in the matrix, which greatly enhances the normal and upconversion green luminescence efficiency of Er3+. The nanocrystal aided enhancement of normal and upconversion luminescence of Er3+ of the glass has been attributed to the crystal field effects of the new environment of Er3+ in the nanocrystals. A phenomenon of preferential enhancement of red upconversion luminescence at the cost of green upconversion luminescence of Er3+ at its higher concentrations in the glass has been observed and the related photo-physics is proposed. The material shows the prospect of being used as NIR solar concentrator.  相似文献   

7.
The influence of different degrees of crystallinity on the magnetic behaviour of heat-treated nanocrystalline Fe76Mo8Cu1B15 alloy has been investigated using a combination of Mössbauer spectrometry and magnetic measurements. The evolution of magnetically active regions and their growth with rising contents of nanocrystals are followed by distributions of hyperfine interactions. Combined electric quadrupole and magnetic dipole interactions corresponding to non-magnetic and magnetic regions inside the amorphous phase, respectively, were revealed. A deterioration of the soft-magnetic properties takes place for the samples exhibiting low fraction of crystallinity. The very good soft-magnetic behaviour is regained for the samples where the primary crystallization process is almost finished.  相似文献   

8.
The magnetic properties of the Nd0.5Gd0.5Fe3(BO3)4 single crystal have been studied in principal crystallographic directions in magnetic fields to 90 kG in the temperature range 2–300 K; in addition, the heat capacity has been measured in the range 2–300 K. It has been found that, below the Néel temperature T N = 32 K down to 2 K, the single crystal exhibits an easy-plane antiferromagnetic structure. A hysteresis has been detected during magnetization of the crystal in the easy plane in fields of 1.0–3.5 kG, and a singularity has been found in the temperature dependence of the magnetic susceptibility in the easy plane at a temperature of 11 K in fields B < 1 kG. It has been shown that the singularity is due to appearance of the hysteresis. The origin of the magnetic properties of the crystal near the hysteresis has been discussed.  相似文献   

9.
The magnetic and crystal structures of the Pr0.5Sr0.5CoO3 metallic ferromagnet have been studied by the neutron diffraction technique. It is demonstrated that below 150 K, the compound is mesoscopically separated into two crystalline phases with different spatial symmetries and with different directions of the magnetic anisotropy. The phase separation exists down to 1.5 K, and at temperatures below 90 K, the low-symmetry phase occupies about 80% of the sample volume. The main structural difference between the phases is the configuration of oxygen atoms around praseodymium and, to a certain extent, around cobalt. The ferromagnetic structure with the magnetic moment lying in the basal plane of the structure (μCo ≈ 1.7 μ B at 1.5 K) arises at 234 K, whereas the component directed along the long axis of the unit cell appears at 130 K. The formation of the new structural phase and change in the orientation of the magnetic moment give rise to the anomalies of the physical and magnetic characteristics of this compound observed earlier at temperatures about 120 K.  相似文献   

10.
The spectra of the conductivity and dielectric constant of La1.87Sr0.13CuO4 cuprate have been directly measured in the frequency range of 0.3 to 1.2 THz (10–40 cm−1) and the temperature range of 5 to 300 K in the E | c polarization (the electric field vector of radiation is perpendicular to the copper-oxygen planes). Excitation has been observed in the superconducting phase, and its nature has been attributed to the transverse optical excitation of the condensate of Cooper pairs, which appears because Josephson junctions between CuO planes are modulated due to in-plane magnetic and charge stripes. Additional quasiparticle absorption of unknown origin has been detected at frequencies below ≈15 cm−1 at liquid helium temperatures.  相似文献   

11.
The rapid solidification of Sb60Ag20Cu20 ternary alloy was realized by high undercooling method, and the maximum undercooling is up to 142 K (0.18TL). Within the wide undercooling range of 40-142 K, the solidified microstructures are composed of (Sb), θand ε phases. High undercooling enlarges the solute solubility of (Sb) phase, which causes its crystal lattice to expand and its crystal lattice constants to increase. Primary (Sb) phase grows in two modes at small undercoolings non-faceted dendrite growth is the main growth form; whereas at large undercoolings faceted dendrite growth takes the dominant place. The remarkable difference of crystal structures between (Sb) and θphases leads to (θ Sb) pseudobinary eutectic hard to form, whereas strips of θform when the alloy melt reaches the (θ Sb) pseudobinary eutectic line. The cooperative growth of θand ε phases contributes to the formation of (ε θ) pseudobinary eutectic easily. In addition, the crystallization route has been determined via microstructural characteristic analysis and DSC experiment.  相似文献   

12.
The effect of severe plastic deformation by torsion (SPDT) in Bridgman anvils at a high pressure (6 GPa) on the physical properties and crystal structure of the shape memory alloy Ti49.5Ni50.5 has been studied. The behavior of the thermal expansion, electrical resistivity, absolute differential thermopower, Hall coefficient, magnetic properties, and optical characteristics of the amorphous/nanocrystalline and submicrocrystalline alloys obtained by the SPDT with subsequent heat treatment at 800 K has been discussed.  相似文献   

13.
The [N(CH3)4][N(C2H5)4]ZnCl4 compound has been synthesized by a solution-based chemical method. The X-ray diffraction study at room temperature revealed an orthorhombic system with P21212 space group. The complex impedance has been investigated in the temperature and frequency ranges 420–520 K and 200 Hz–5 MHz, respectively. The grain interior and grain boundary contribution to the electrical response in the material have been identified. Dielectric data were analyzed using the complex electrical modulus M * for the sample at various temperature. The modulus plots can be characterized by full width at half height or in terms of a non-exponential decay function ϕ(t) = exp[(−t/τ) β ]. The detailed conductivity study indicated that the electrical conduction in the material is a thermally activated process. The variation of the AC conductivity with frequency at different temperatures obeys the Almond and West universal law.  相似文献   

14.
A complex investigation of the structural, magnetic, and magnetothermal properties of the Tb0.3Dy0.7Co2 compound synthesized with the use of high-purity rare-earth metals has been performed. The phase composition has been controlled using the X-ray structural analysis, and the topology of the alloy surface has been investigated using atomic-force microscopy. It has been established that the Tb0.3Dy0.7Co2 compound is single-phase, while the samples selected for measurements possess a clearly pronounced texture. The magnetization has been measured using a vibrating-sample magnetometer in the fields up to 100 kOe in a temperature range from 4.2 to 200 K. The Curie temperature of the compound is 170 K. The data on the temperature dependence of heat capacity of Tb0.3Dy0.7Co2 have been obtained. The magnetocaloric effect ΔT has been measured by a direct method in the fields up to 18 kOe applied both along and perpendicularly to the texture axis. The anisotropic behavior of the magnitude ΔT for this compound, which possesses the cubic structure, has been found. The maximum value of the magnetocaloric effect ΔT = 2.3 K (ΔH = 18 kOe) has been observed upon applying the magnetic field along the texture axis.  相似文献   

15.
The magnetic susceptibility χ/χ0 and the longitudinal Δρ zz 0 and transverse Δρ xx 0 magnetoresistances have been measured as functions of the hydrostatic pressure P ≤ 7 GPa at room temperature in the high-temperature ferromagnetic semiconductor Cd0.7Mn0.3GeAs2 with a chalcopyrite structure and the Curie temperature T c = 355 K. A pressure-induced metamagnetic transition from the low-magnetization state to the high-magnetization state has been observed in Cd0.7Mn0.3GeAs2 near the magnetic ordering temperature. This transition is accompanied by the hysteresis of the magnetic susceptibility and magnetoresistance.  相似文献   

16.
The mechanical properties of As2Se3 and Ge2Se3 thin films have been studied by the method of quasi-static nonoindentation. The mechanisms of formation and recovery of the indentations in the studied materials have been analyzed under conditions of their local loading. It has been revealed that the deformation mechanism of the chalcogenide films changes in going from As2Se3 to Ge2Se3. It has been found that, during deformation of the As2Se3 film under the indenter, the accumulation of plastic deformation prevails, and, for the Ge2Se3 film, the substantial mechanism is the relaxation of its deformation.  相似文献   

17.
The influence of plastic deformation on the structure of the Pd40Ni40P20 amorphous alloy has been investigated using X-ray diffraction and measurements of the velocity of sound. It has been revealed that the rolling of the sample leads to a change in the structure of the amorphous phase (distortion of the first coordination sphere) and that the structural transformations are more pronounced in the near-surface region of the sample. The rolling also results in a decrease in the transverse velocity of sound. The observed effects decrease with time. It has been demonstrated that the revealed effects are associated with the inelastic deformation of the amorphous alloy.  相似文献   

18.
The crystal structure and Raman spectra of Pr0.7Ca0.3MnO3 manganite at high pressures of up to 30 GPa and the magnetic structure at pressures of up to 1 GPa have been studied. A structural phase transition from the orthorhombic phase of the Pnma symmetry to the high-pressure orthorhombic phase of the Imma symmetry has been observed at P ∼ 15 GPa and room temperature. Anomalies of the pressure dependences of the bending and stretching vibrational modes have been observed in the region of the phase transition. A magnetic phase transition from the initial ferromagnetic ground state (T C = 120 K) to the A-type antiferromagnetic state (T N = 140 K) takes place at a relatively low pressure of P = 1 GPa in the low-temperature region. The structural mechanisms of the change of the character of the magnetic ordering have been discussed.  相似文献   

19.
The transmission spectra of silicate glasses containing CdS1 − x Se x semiconducting nanocrystals of various sizes are investigated in the temperature range 20–300°C. It is shown that for explaining optical properties of these materials, not only the nanocrystal sizes, but also the structural changes occurring in nanocrystals during their formation must be taken into account.  相似文献   

20.
Two sets of samples of SnO2/In2O3/TiO2 system have been fabricated with different concentrations of component materials. In the first set TiO2 with rutile structure was used, while in the second set it has the structure of anatase. Thin films (up to 50 nm) of obtained mixtures were deposited. Their sensitivity and selectivity with respect to methane (CH4) were studied. Nanostructure on the basis of 70%SnO2 — 10%In2O3 — 20%TiO2(anatase) exhibits sufficient sensitivity to methane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号