首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal and redox modulation of cysteine protein function   总被引:4,自引:0,他引:4  
In biological systems, the amino acid cysteine combines catalytic activity with an extensive redox chemistry and unique metal binding properties. The interdependency of these three aspects of the thiol group permits the redox regulation of proteins and metal binding, metal control of redox activity, and ligand control of metal-based enzyme catalysis. Cysteine proteins are therefore able to act as "redox switches," to sense concentrations of oxidative stressors and unbound zinc ions in the cytosol, to provide a "storage facility" for excess metal ions, to control the activity of metalloproteins, and to take part in important regulatory and signaling pathways. The diversity of cysteine's multiple roles in vivo is equally as fascinating as it is promising for future biochemical and pharmacological research.  相似文献   

2.
The redox-active, sulfur-containing amino acids cysteine and methionine, the tripeptide glutathione and their oxidized counterparts cystine, methionine sulfoxide, and glutathione disulfide were separated as anions by capillary zone electrophoresis (CZE) in a 72?cm long fused silica capillary filled with 100?mM phosphate buffer, pH 8.0, at a voltage of +30?kV in 20?min. The optimized CZE method was suited for the implementation of quantitative metal interaction studies of the biomolecules in a biologically relevant concentration range (μM–mM). Decreasing peak areas of the reduced forms of cysteine and glutathione and simultaneously increasing peak areas of the oxidized forms after incubation of the reduced biomolecules with divalent heavy metal cations indicated redox reactions which could be responsible for toxic metal actions in biological systems. CZE measurements revealed that a 50?% oxidation grade of cysteine was achieved at a molar metal:cysteine ratio of 0.85 in case of Zn(II) addition and of 0.11 in case of Cu(II) addition, respectively. Cu(II) oxidized 50?% of the initial glutathione at a molar Cu:peptide ratio of 0.036, whereas the 50?% oxidation grade was not reached after incubation with Co(II) up to a molar ratio of Co:peptide of 0.25.  相似文献   

3.
The trace element selenium (Se) is a crucial element for many living organisms, including soil microorganisms, plants and animals, including humans. Generally, in Nature Se is taken up in the living cells of microorganisms, plants, animals and humans in several inorganic forms such as selenate, selenite, elemental Se and selenide. These forms are converted to organic forms by biological process, mostly as the two selenoamino acids selenocysteine (SeCys) and selenomethionine (SeMet). The biological systems of plants, animals and humans can fix these amino acids into Se-containing proteins by a modest replacement of methionine with SeMet. While the form SeCys is usually present in the active site of enzymes, which is essential for catalytic activity. Within human cells, organic forms of Se are significant for the accurate functioning of the immune and reproductive systems, the thyroid and the brain, and to enzyme activity within cells. Humans ingest Se through plant and animal foods rich in the element. The concentration of Se in foodstuffs depends on the presence of available forms of Se in soils and its uptake and accumulation by plants and herbivorous animals. Therefore, improving the availability of Se to plants is, therefore, a potential pathway to overcoming human Se deficiencies. Among these prospective pathways, the Se-biofortification of plants has already been established as a pioneering approach for producing Se-enriched agricultural products. To achieve this desirable aim of Se-biofortification, molecular breeding and genetic engineering in combination with novel agronomic and edaphic management approaches should be combined. This current review summarizes the roles, responses, prospects and mechanisms of Se in human nutrition. It also elaborates how biofortification is a plausible approach to resolving Se-deficiency in humans and other animals.  相似文献   

4.

The redox-active, sulfur-containing amino acids cysteine and methionine, the tripeptide glutathione and their oxidized counterparts cystine, methionine sulfoxide, and glutathione disulfide were separated as anions by capillary zone electrophoresis (CZE) in a 72 cm long fused silica capillary filled with 100 mM phosphate buffer, pH 8.0, at a voltage of +30 kV in 20 min. The optimized CZE method was suited for the implementation of quantitative metal interaction studies of the biomolecules in a biologically relevant concentration range (μM–mM). Decreasing peak areas of the reduced forms of cysteine and glutathione and simultaneously increasing peak areas of the oxidized forms after incubation of the reduced biomolecules with divalent heavy metal cations indicated redox reactions which could be responsible for toxic metal actions in biological systems. CZE measurements revealed that a 50 % oxidation grade of cysteine was achieved at a molar metal:cysteine ratio of 0.85 in case of Zn(II) addition and of 0.11 in case of Cu(II) addition, respectively. Cu(II) oxidized 50 % of the initial glutathione at a molar Cu:peptide ratio of 0.036, whereas the 50 % oxidation grade was not reached after incubation with Co(II) up to a molar ratio of Co:peptide of 0.25.

  相似文献   

5.
Small molecule-based electrophilic compounds such as 1-chloro-2,4-dinitrobenzene (CDNB) and 1-chloro-4-nitrobenzene (CNB) are currently being used as inhibitors of cysteine- and selenocysteine-containing proteins. CDNB has been used extensively to determine the activity of glutathione S-transferase and to deplete glutathione (GSH) in mammalian cells. Also, CDNB has been shown to irreversibly inhibit thioredoxin reductase (TrxR), a selenoenzyme that catalyses the reduction of thioredoxin (Trx). Mammalian TrxR has a C-terminal active site motif, Gly-Cys-Sec-Gly, and both the cysteine and selenocysteine residues could be the targets of the electrophilic reagents. In this paper we report on the stability of a series of cysteine and selenocysteine derivatives that can be considered as models for the selenoenzyme–inhibitor complexes. We show that these derivatives react with H2O2 to generate the corresponding selenoxides, which undergo spontaneous elimination to produce dehydroalanine. In contrast, the cysteine derivatives are stable towards such elimination reactions. We also demonstrate, for the first time, that the arylselenium species eliminated from the selenocysteine derivatives exhibit significant redox activity by catalysing the reduction of H2O2 in the presence of GSH (GPx (glutathione peroxidase)-like activity), which suggests that such redox modulatory activity of selenium compounds may have a significant effect on the cellular redox state during the inhibition of selenoproteins.  相似文献   

6.
The importance of selenium as an essential trace element is now well recognized. In proteins, the redox-active selenium moiety is incorporated as selenocysteine (Sec), the 21st amino acid. In mammals, selenium exerts its redox activities through several selenocysteine-containing enzymes, which include glutathione peroxidase (GPx), iodothyronine deiodinase (ID), and thioredoxin reductase (TrxR). Although these enzymes have Sec in their active sites, they catalyze completely different reactions and their substrate specificity and cofactor or co-substrate systems are significantly different. The antioxidant enzyme GPx uses the tripeptide glutathione (GSH) for the catalytic reduction of hydrogen peroxide and organic peroxides, whereas the larger and more advanced mammalian TrxRs have cysteine moieties in different subunits and prefer to utilize these internal cysteines as thiol cofactors for their catalytic activity. On the other hand, the nature of in vivo cofactor for the deiodinating enzyme ID is not known, although the use of thiols as reducing agents has been well-documented. Recent studies suggest that molecular recognition and effective binding of the thiol cofactors at the active site of the selenoenzymes and their mimics play crucial roles in the catalytic activity. The aim of this perspective is to present an overview of the thiol cofactor systems used by different selenoenzymes and their mimics.  相似文献   

7.
章军  傅庭治 《分析化学》1995,23(1):49-51
本文用苯异硫氰酸酯作柱前衍生化试剂,衍生的硒蛋氨酸及其它非硒代氨基酸用反相高交液相色谱进行分离分析,分析表明,加无机硒培养的构菌菌丝体中含一定量的硒蛋氨酸,且这一方法广泛适于生物物质中其它硒代氨基酸的分析。  相似文献   

8.
Zheng J  Shibata Y  Furuta N 《Talanta》2003,59(1):27-36
Analytical methods for the speciation of nine selenium species (selenite, selenate, selenourea, trimethylselenonium ion, selenocystamine, selenocystine, selenocysteine, selenomethionine and selenoethionine) that are commonly encountered in biological and environmental samples were developed. Good separation was achieved by either a mixed ion-pair reversed phase chromatography (LiChrosorb RP 18, 2.5 mM 1-butanesulfonate-8 mM tetramethylammonium hydroxide-4 mM malonic acid-0.05% methanol, pH 4.5) or a conventional ion-pair reversed phase chromatography (Inertsil ODS, 10 mM tetraethylammonium hydroxide-4.5 mM malonic acid, pH 6.8) with on-line ICP-MS detection. Using a 20-μl sample loop, low detection limits around 1 ng ml−1 expressed as Se were achieved for the examined selenium species. The methods were used for the determination of selenoamino acids in a selenium nutritional supplement. The developed methods were found to be rather robust. No alteration of the separation was observed when the protease enzymatic extracts were analyzed without dilution. Both water extracts and enzymatic extracts were chromatographed first with the mixed ion-pair reversed phase chromatographic system, then the major chromatographic peaks were collected and analyzed by the second ion-pair reversed phase chromatographic system for a further verification of their identity. Selenomethionine was found to be the major selenium species in the supplement. A major unknown species, probably Se-adenosylhomocysteine, could be determined in the extracts. A biological reference material, Dolt-2, was also examined for the selenoamino acids. Selenocystine and selenomethionine could be detected in its enzymatic extract, suggesting that Dolt-2 may be used as a reference material for the identification of selenoamino acids in biological and environmental samples. As selenoethionine does not occur naturally in the investigated samples, it is added as an internal standard in this study.  相似文献   

9.
An analytical method for determining seleno‐methionine, methyl‐seleno‐cysteine, and seleno‐cystine in wheat bran was developed and validated. Four different extraction procedures were evaluated to simultaneously extract endogenous free and conjugated seleno‐amino acids in wheat bran in order to select the best extraction protocol in terms of seleno amino acid quantitation. The extracted samples were subjected to a clean‐up by a reversed phase/strong cation exchange solid‐phase extraction and analyzed by chiral hydrophilic interaction liquid chromatography‐tandem mass spectrometry. The optimized extraction protocol was employed to validate the methodology. Process efficiency ranged from 58 to 112% and trueness from 73 to 98%. Limit of detection and limit of quantification were lower than 1 ng/g. Four wheat bran samples were analyzed for both total Se and single seleno‐amino acids determination. The results showed that Se‐ seleno‐methyl‐l selenocysteine was the major seleno‐amino acid in wheat bran while seleno‐methionine and seleno‐cysteine were both minor species.  相似文献   

10.
The first crystallographically characterized molybdenum(vi) selenoether complex [Mo(2)O(4)(OC(3)H(6)SeC(3)H(6)O)(2)] and its thioether analogue [Mo(2)O(4)(OC(3)H(6)SC(3)H(6)O)(2)] were synthesised. Their structural, electrochemical and oxygen atom transfer properties are compared. This is relevant for the molybdenum cofactors of the DMSO reductase family where the coordination of the active site metal occurs through O (serine/aspartate), S (cysteine) or Se (selenocysteine). Both structures are almost identical except for those parameters that are directly derived from the different sizes of the varied ligand atoms (Se and S). No trans influence was observed. The metal centered redox process (Mo(V)<-->Mo(VI)) is at slightly lower voltage for the sulfur than for the selenium complex. The selenium compound catalyses the oxygen atom transfer from DMSO to PPh(3) by a different mechanism and at a higher rate than the sulfur compound, which is an indication that cysteine and selenocysteine might be used for a purpose in the different molybdenum and tungsten cofactors.  相似文献   

11.
Determination of selenomethionine in selenized yeast by HPLC–ICP MS has been revisited with the focus on recovery of this amino acid during the proteolytic digestion and chromatography steps. Recovery of the extracted selenium from an anion-exchange column was 100% but selenomethionine quantified by the method of standard additions accounted only for 67% of the selenium injected. Analysis (by size-exclusion LC–ICP MS) of the eluate collected before and after the selenomethionine peak showed the presence of oxidized selenomethionine (ca. 3%) and selenomethionine likely to be unspecifically associated with the biological matrix continuum (ca. 11%). This finding was validated by two-dimensional LC–ICP MS using a different elution order, i.e. size-exclusion anion-exchange. The approach developed enabled demonstration that more than 80% of selenium in the selenized yeast is actually present in the form of selenomethionine and suggests that many results reported elsewhere for the concentration of this vital amino acid in selenized yeast may be negatively biased. The research also provided insight into speciation of selenium in the solid residue after proteolytic extraction but the additional amount of selenomethionine recovered was negligible (<1.5%).  相似文献   

12.
The controlled oxidation reaction of L-selenocystine under neutral pH conditions affords selenocysteine seleninic acid (3-selenino-L-alanine) which is characterized also by means of single-crystal X-ray diffraction. This technique shows that selenium forms three chalcogen bonds (ChBs), one of them being outstandingly short. A survey of seleninic acid derivatives in the Cambridge Structural Database (CSD) confirms that the C−Se(=O)O− functionality tends to act as a ChB donor robust enough to systematically influence the interactional landscape in the solid. Quantum Theory of Atom in Molecules (QTAIM) analysis proves the attractive nature of the short contacts observed in crystals containing the seleninic functionality and calculation of surface molecular electrostatic potential (MEP) reveals that remarkably positive σ-holes can frequently be found opposite to the covalent bonds at selenium. Both CSD searches and QTAIM and MEP approaches show that also the sulfinic acid moiety can function as a ChB donor, albeit less frequently than the seleninic acid one. These findings may contribute to a better understanding, at the atomic level, of the mechanism of action of the enzymes that control oxidative stress and ROS deactivation and that contain selenocysteine seleninic acid and cysteine sulfinic acid in the active site.  相似文献   

13.
Iodothyronine deiodinases (IDs) are mammalian selenoenzymes that catalyze the conversion of thyroxine (T4) to 3,5,3'-triiodothyronine (T3) and 3,3',5'-triiodothyronine (rT3) by the outer- and inner-ring deiodination pathways, respectively. These enzymes also catalyze further deiodination of T3 and rT3 to produce a variety of di- and monoiodo derivatives. In this paper, the deiodinase activity of a series of peri-substituted naphthalenes having different amino groups is described. These compounds remove iodine selectively from the inner-ring of T4 and T3 to produce rT3 and 3,3'-diiodothyronine (3,3'-T2), respectively. The naphthyl-based compounds having two selenols in the peri-positions exhibit much higher deiodinase activity than those having two thiols or a thiol-selenol pair. Mechanistic investigations reveal that the formation of a halogen bond between the iodine and chalcogen (S or Se) and the peri-interaction between two chalcogen atoms (chalcogen bond) are important for the deiodination reactions. Although the formation of a halogen bond leads to elongation of the C-I bond, the chalcogen bond facilitates the transfer of more electron density to the C-I σ* orbitals, leading to a complete cleavage of the C-I bond. The higher activity of amino-substituted selenium compounds can be ascribed to the deprotonation of thiol/selenol moiety by the amino group, which not only increases the strength of halogen bond but also facilitates the chalcogen-chalcogen interactions.  相似文献   

14.
Abstract

Mice fed diets containing selenomethionine at a level of 20 ppm selenium and raised to 30 ppm selenium at 3 weeks on experiment showed (1) delayed response to selenium toxicity, (2) slow recovery from the toxicity after removal of selenium from the diet and (3) relatively high deposition and retention of tissue selenium. These data suggest that selenomethonine initially becomes incorporated in to the primary structure of proteins and as such is not particularly toxic. However, upon its slow removal from protein, selenomethionine becomes toxic by forming selenium IV compounds through a pathway similar to that followed by methionine.

Mice fed diets containing sodium selenite or Se-methylselenocysteine at the same level of selenium as the selenomethionine diet showed (1) immediate response to selenium toxicity (2) rapid recovery from the toxicity after removal of selenium from the diet and (3) relatively low deposition and relatively rapid depletion of tissue selenium. These data suggest that sodium selenite and Se-methylselenocysteine ultimately follow similar metabolic pathways and do not become part of the primary structure of proteins. A possible metabolic route for Se-methylselenocysteine is that it is oxidized to toxic selenium IV compounds through an oxidative pathway similar to that followed by S-methylcysteine.  相似文献   

15.
The electrochemical oxidation behaviour at boron doped diamond and glassy carbon electrodes of the sulphur-containing amino acids cysteine and methionine, using cyclic and differential pulse voltammetry over a wide pH range, was compared. The oxidation reactions of these amino acids are irreversible, diffusion-controlled pH dependent processes, and occur in a complex cascade mechanism. The amino acid cysteine undergoes similar three consecutive oxidation reactions at both electrodes. The first step involves the oxidation of the sulfhydryl group with radical formation, that undergoes nucleophilic attack by water to give an intermediate species that is oxidized in the second step to cysteic acid. The oxidation of the sulfhydryl group leads to a disulfide bridge between two similar cysteine moieties forming cysteine. The subsequent oxidation of cystine occurs at a higher potential, due to the strong disulfide bridge covalent bond. The electro-oxidation of methionine at a glassy carbon electrode occurs in two steps, corresponding to the formation of sulfoxide and sulfone, involving the adsorption and protonation/deprotonation of the thiol group, followed by electrochemical oxidation. Methionine undergoes a one-step oxidation reaction at boron doped diamond electrodes due to the negligible adsorption, and the oxidation also leads to the formation of methionine sulfone.  相似文献   

16.
建立了富硒黑木耳中硒代胱氨酸、硒代半胱氨酸、亚硒酸、硒蛋氨酸、硒酸5种硒形态的液相色谱-原子荧光光谱分析方法。通过链酶蛋白酶E酶解,结合超声提取后,选取Hamilton PRP-X100离子交换色谱柱(250 mm×4.1 mm,10μm),40 mmol/L的磷酸氢二铵为流动相,在16 min内,5种硒形态完全达到基线分离。5种硒形态在线性范围内相关系数R为0.9990~0.9999;加标回收率为76.1%~108%;检出限分别为硒代胱氨酸0.35μg/L、甲基-硒代半胱氨酸0.46μg/L、亚硒酸0.26μg/L、硒代蛋氨酸0.64μg/L、硒酸3.06μg/L;方法应用于富硒黑木耳中硒形态的分析,精密度高、重现性好、方法稳定、准确可靠,是测定富硒黑木耳中硒形态含量的有效方法。  相似文献   

17.
Abstract

Some enzymes known to contain selenium are enumerated. In four of them which catalyze coupled oxidation-reduction reactions the selenium occurs exclusively in the form of selenocysteine residues. Their structure and function are described in detail. Two other bacterial enzymes which contain selenium in the form of a labile, readily dissociable component are also described.

Results on the isolation, identification and structure determination of selenium-containing amino acid transfer ribonucleic acids are presented. These seleno-t RNA's are shown to contain either 5-methyl-aminomethyl-2-selenouridine or other 2-selenouridine derivatives. The role of selenium in a glutamate iso-accepter species is discussed.  相似文献   

18.
Selenium has been identified as an antioxidant of importance in the diet. Accurate determination of its chemical forms depends on the availability of suitable reference materials (RMs). Two candidate reference materials for determination of selenomethionine (Semet) in food-related materials, a standard wheat gluten sample (NIST RM 8418 Wheat Gluten) and a commercial selenium enriched yeast, have been examined by use of a gas chromatography-isotope dilution mass spectrometry (IDMS) procedure, after treatment of the matrix with 0.1 mol L(-1) hydrochloric acid containing stannous chloride, addition of CNBr, and extraction with chloroform. This procedure results in cleavage of the CH3Se group to form volatile CH3SeCN. Addition of isotopically enriched 74Semet to an analytical sample enables estimation of the naturally occurring protein-bound 80Semet by IDMS without a protein-digestion process. We found that the Wheat Gluten RM contains a significant amount of Semet as a portion of its assigned value of 2.58 microg Se(total g(-1). Commercial selenium yeast tablets are labeled as containing an elevated level of "organic selenium", usually as Semet. The sample we investigated contained 210 microg Se(total) g(-1) sample as determined separately by IDMS, measuring elemental selenium after digestion. 73% of this total (153 +/- 21 microg Se(semet) g(-1); n = 23) was present as Semet. Thus, these two materials contain significant amounts of their total selenium content as Semet and would be good candidates for further study and characterization as reference materials for determining this important food component. The CNBr reaction used will also enable the determination of Se-(methyl)selenocysteine, the biological role of which is of recent interest. In addition to matrix RMs for Semet, it is important to have standard materials of the pure substance. We have examined a sample of a candidate standard material of selenomethionine being prepared by the USP. It was confirmed that this material is pure selenomethionine.  相似文献   

19.
Speciation of selenocysteine (SeCys), selenomethionine (SeMet), selenoethionine (SeET), selenite (Se(IV)) and selenate (Se(VI)) has been accomplished using high-performance liquid chromatography, with the aid of an anion exchange column and a reversed-phase column, both connected through a six-port switching valve. On-line microwave-assisted digestion and hydride generation steps were performed prior to the atomic fluorescence detection. The elution of the seleno amino acids was accomplished in the reversed-phased column using water as mobile phase. Selenite and selenate were separated in the anion exchange column, using gradient elution with an acetate buffer. The separation of the five selenium compounds took place in 15 min. The detection limits obtained ranged between 0.6 and 0.9 microg l(-1). Values of r>0.998 were obtained for linear fit graphs. A commercial available urine sample was analyzed, in which SeCys and Se(IV) were quantified.  相似文献   

20.
Selenocysteine, the selenium‐containing analogue of cysteine, is the twenty‐first proteinogenic amino acid. Since its discovery almost fifty years ago, it has been exploited in unnatural systems even more often than in natural systems. Selenocysteine chemistry has attracted the attention of many chemists in the field of chemical biology owing to its high reactivity and resulting potential for various applications such as chemical modification, chemical protein (semi)synthesis, and protein folding, to name a few. In this Minireview, we will focus on the chemistry of selenium and selenocysteine and their utility in protein chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号