首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the pseudopotential formalism under the virtual crystal approximation, the dielectric and lattice vibration properties of zinc-blende InAs1−xySbxPy quaternary system under conditions of lattice matching and lattice mismatching to InAs substrates have been investigated. Generally, a good agreement is noticed between our results and the available experimental and theoretical data reported in the literature. The variation of all features of interest versus either the composition parameter x or the lattice mismatch percentage is found to be monotonic and almost linear. The present study provides more opportunities to get diverse high-frequency and static dielectric constants, longitudinal and transversal optical phonon modes and phonon frequency splitting by a proper choice of the composition parameters x and y (0  x  0.30, 0  y  0.69) and/or the lattice mismatch percentage.  相似文献   

2.
The results of an experimental investigation of the temperature dependences of the magnetic susceptibility and resistivity in the shape-memory ferromagnetic alloys Ni2+x Mn1−x Ga (x=0–0.20) are reported. A T−x phase diagram is constructed on the basis of these data. It is shown that partial substitution of Ni for Mn causes the temperatures of the structural (martensitic) T M and magnetic T C (Curie point) phase transitions to converge. In the region where T C =T M the transition temperature increases linearly with magnetic field in the range from 0 to 10 kOe. The kinetics of a magnetic-field-induced martensitic phase transition is investigated, and the velocities of the martensite-austenite interphase boundary during direct and reverse transitions are measured. A theoretical model is proposed and the T−x phase diagram is calculated. It is shown that there exist concentration ranges where the magnetic and martensitic transitions merge into a first-order phase transition. The theoretical results are in qualitative agreement with experiment. Zh. éksp. Teor. Fiz. 115, 1740–1755 (May 1999)  相似文献   

3.
In this work we report the results of X-ray diffraction and Mössbauer spectroscopy for the systems Pr0.5Sr0.5Mn1???x Fe x O3 (with x?=?0.05, 0.10, 0.15, 0.20, 0.25, 0.30). XRD patterns indicated that all samples were single phase with slightly distorted orthorhombic symmetry. Room temperature Mössbauer spectra are all quadrupole split, indicating paramagnetic relaxation of the Fe moment for all values of Fe concentrations. The spectra are fitted with two doublet components associated with Fe3?+? ions in octahedral sites with different distortions. Mössbauer spectra recorded at liquid nitrogen temperature for this system also indicate paramagnetic relaxation of the Fe moments down to liquid nitrogen temperature (LNT). In these spectra a third quadrupole component with quadrupole splitting close to zero develops. This component is associated with the delocalization of the charge carriers and the consequent disappearance of lattice distortions produced by the polaronic effect at room temperature. The component with the high quadrupole splitting (0.81 to 1.07 mm/s) results from Jahn–Teller distortion as a consequence of charge ordering transition at low temperature.  相似文献   

4.
Results of the superconducting transition temperatureT c of amorphous and microcrystalline films of lead doped with manganese as magnetic impurity are reported in this work. The amorphous films show an Abrikosov-Gor'kov behaviour, whereas for the crystalline films there is a much smaller depression and a peak for higher Mn concentrations, which indicates a region of coexistence of superconductivity and magnetic ordering as a spinglass.Supported by the Deutsche Forschungsgemeinschaft in the Sonderforschungsbereich 125, Fehlordnung in Metallen — Aachen, Jülich, Köln  相似文献   

5.
A comparative analysis of the kinetic properties of intracenter 3d luminescence of Mn2+ ions in the dilute magnetic superconductors Cd1?x MnxTe and Cd1?x?y MnxMgyTe is carried out. The influence of relative concentrations of the cation components on the position of the intracenter luminescence peak indicates that the introduction of magnesium enhances crystal field fluctuations. As a result, the processes facilitating nonlinear quenching of luminescence are suppressed. The kinetics of 3d-luminescence quenching in Cd1?x MnxTe are accelerated considerably upon elevation of optical excitation level due to the evolution of cooperative processes in the system of excited manganese ions.  相似文献   

6.
Based on the assumption of a high-moment-low-moment instability of the Mn atom, we construct a simple spin model with coupled magnetic and spatial degrees of freedom to describe the Laves phase systems Y(Mn x Al 1 m x ) 2 and Y x Sc 1 m x Mn 2 . Monte Carlo simulations of this model qualitatively reproduce anomalies observed in these materials like a discontinuous giant volume change and anomalous thermal expansion behavior.  相似文献   

7.
Results from investigating the structural, magnetic, and electrical properties of Yb x Mn1 ? x S alloys (0 ≤ x ≤ 0.2) synthesized on the basis of manganese monosulfide are presented. Substituting manganese for ytterbium increases the concentration of charge carriers and lowers the activation energy. The observed anomalies in the temperature dependence of resistivity are explained by an impurity semiconductor model with donor 4f levels.  相似文献   

8.
The Cr-doped rare-earth manganites Nd0.5Ca0.5Mn1−x Cr x O3 (x = 0.03, 0.05, 0.10) are studied by electron magnetic resonance (EMR) and magnetization measurements in the paramagnetic as well as in the ferromagnetic phase. The magnetization measurements show that the charge-ordered antiferromagnetic phase decreases at the expense of ferromagnetic metallic phase and for Cr doping of x = 0.1, the charge-ordered phase melts completely. The EMR shows multiple signals for all three compositions in the ferromagnetic phase indicative of an anisotropic ferromagnetic phase. The difference between the shift of the high-field and low-field signals decreases with Cr doping, indicating that the magnetic anisotropy decreases with the Cr doping. In the paramagnetic phase the EMR line width follows Causa's model as observed in other colossal magnetoresistant manganites. Authors' address: Ajay Sharma, Department of Physics, Indian Institute of Science, Bangalore, India  相似文献   

9.

The surprising disappearance of the Mn 2+ photoluminescence (PL) on passing from CaF 2 to SrF 2 through the Ca 1 m x Sr x F 2 :Mn 2+ series is investigated through pressure spectroscopy, and as a function of the temperature. The PL quenching which is observed along the series is explained on the basis of multiphonon relaxation mechanisms, which are described by a thermally activated process. In non-luminescent crystals, PL can be recovered by applying pressure. The results are accounted for through an universal equation relating the PL lifetime as a function of P (or V ) and T , using an activation energy and a transition rate that are strongly dependent on the lattice parameter (crystal volume).  相似文献   

10.
In this study, the influence of film thickness on the first-order martensite–austenite phase transformation of Ni–Mn–Sn ferromagnetic shape memory alloy thin films has been systematically investigated. Different thicknesses of the Ni–Mn–Sn films (from ~100 to 2,500 nm) were deposited by DC magnetron sputtering on Si (100) substrates at 550 °C. X-ray analysis reveals that all the films exhibit austenitic phase with the L21 cubic crystal structure at room temperature. The grain size and crystallization extent increase with the increase in film thickness, but the films with thickness above ~1,400 nm show structural deterioration due to the formation of MnSn2 and Ni3Sn4 precipitates. The improvement in the crystallinity of the film with thickness is attributed to the decrease in film–substrate interfacial strain resulting in preferred oriented growth of the films. Temperature-dependent magnetization measurements as well as electrical measurements demonstrate the complete absence of phase transformation for the film of thickness of ~120 nm. For thickness greater than 400 nm, film exhibits the structural transformation, and it occurs at higher temperature with better hysteresis as film thickness is increased up to ~1,400 nm, after which degradation of phase transformation phenomenon is observed. This degradation is attributed to the disorders present in the films at higher thicknesses. Film with thickness ~1,400 nm possesses the highest magnetization with the smallest thermal hysteresis among all the films and therefore best suited for the actuators based on first-order structural phase transformation. Nanoindentation measurements reveal that the higher values of hardness and elastic modulus of about 5.5 and 215.0 GPa obtained in film of 1,014 nm thickness can considerably improve the ductility of ferromagnetic shape memory alloys (FSMA) and their applicability for MEMS applications. The exchange bias phenomenon is also found to be present in the films of thickness 1014, 1412, and 2022 nm exhibiting prominent martensitic transformation. Film of thickness 2,022 nm exhibits maximum exchange bias of ~50 Oe and higher exchange bias blocking temperature of 70 K as compared to other films.  相似文献   

11.
12.
The initial permeability disaccommodation in ferritesMn x Fe3xO4+ , 0·5x1, was studied in a temperature range around –200°C to +180°C. Four separate bands were found in the relaxation spectrum of these ferrites.
Mn x Fe3–x O4+
Mn x Fe3–x O4+ , 0,5x1, –200°C +180°C. .
  相似文献   

13.
Very recently, on the example of hole- and spin-doped semiconductor LaZnAsO, quite an unexpected area of potential applications of quasi-two-dimensional 1111-like phases was proposed (C. Ding et al., Phys. Rev. B 88, 041102R (2013)) as a promising platform for searching for new diluted magnetic semiconductors (DMSs). In this work, by means of the ab initio calculations, we have examined in detail the electronic and magnetic properties of LaZnAsO alloyed with Ba and Mn. Our results demonstrate that Ba or Mn doping transforms the parent non-magnetic semiconductor LaZnAsO into a non-magnetic metal or a magnetic semiconductor, respectively. On the other hand, the joint effect of these dopants (i.e., co-doping Ba + Mn) leads to transition of La0.89Ba0.11Zn0.89Mn0.11AsO into the state of magnetic metal, which is formed by alternately stacked semiconducting non-magnetic blocks [La0.89Ba0.11O] and metallic-like magnetic blocks [Zn0.89Mn0.11As].  相似文献   

14.
15.
Quantum dots (3–4?nm) of Zn1? x Cd x S (both free of Mn2+ and with Mn2+ incorporated) were synthesized through a novel solvothermal-microwave irradiation technique. Detailed structural analysis of the Zn1? x Cd x S and Zn1? x Cd x S:Mn2+ (x?=?0, 0.25, 0.5, 0.75 and 1) materials was carried out using powder X-ray diffraction technique. For all the compositions, the crystallite size was controlled to less than 1.5?nm. The optical energy gap for Zn1? x Cd x S was found to vary from 3.878 to 2.519?eV and for Zn1?x Cd x S:Mn2+ it varies from 3.830 to 2.442?eV when x is increased from 0 to 1. Overall, the optical energy gap could be tuned from a minimum of 2.442?eV to a maximum of 3.878?eV. DC conductivity analysis (from 40°C to 150°C) and electrical energy gap analysis for all the compositions were also performed. The dc conductivity for Zn1? x Cd x S solid solutions varies from 0.3840?×?10?10 to 8.7782?×?10?10?mho/m at 150°C and for Zn1? x Cd x S:Mn2+ it varies from 0.5751?×?10?10 to 9.8078?×?10?10 mho /m at 150°C (for x?=?0 to x?=?1). The method of synthesis and the results observed in this investigation may assist in the fabrication of optical devices when the required operational performance falls under the range observed in the study.  相似文献   

16.
The crystal structure, piezoelectric and magnetic properties of the Bi1 ? x La x FeO3 solid-solution system near the structural transition between the rhombohedral and orthorhombic phases (0.15 ≤ x ≤ 0.2) have been investigated. The regions of existence of the polar rhombohedral and orthorhombic phases have been determined, and the sequence of structural transitions as a function of the lanthanum ion concentration and temperature has been studied. The maximum piezoelectric signal is found for the solid solution with the composition x = 0.16, which has a single-phase rhombohedral structure. The relation between the type of crystal structure distortions and the increase in the magnetization upon the concentration-driven structural transition from the polar to antipolar phase has been established.  相似文献   

17.
The real and imaginary parts of the magnetic permeability at frequencies of 0.1, 1.0, and 10.0 kHz, as well as the electron paramagnetic resonance (EPR) line width and g-factor, have been measured in Sm x Mn1 ? x S (0.10 < x < 0.25) solid solutions in the temperature range 5–300 K. The logarithmic dependence of the maximum in the imaginary part of the magnetic permeability on the frequency and the power-law dependence of Imμ on the temperature have been determined. The mechanism of relaxation of the magnetic moment in the magnetically ordered and paramagnetic phases has been established. The experimental results have been explained in terms of the Heisenberg model with competing exchange interactions and the formation of the antiaspiromagnetic state at low temperatures.  相似文献   

18.
19.
Single crystals of iron manganese sulfides Fe x Mn1 ? x S (0.25 ≤ x ≤ 0.29) are experimentally investigated using Mössbauer spectroscopy and x-ray diffraction. The Mössbauer spectra measured at 300 K exhibit a single broadened line characteristic of paramagnets. The isomer shift of this line is equal to 0.92–0.94 mm/s, which is typical of Fe2+ ions in the octahedral position. The quadrupole splitting (0.18–0.21 mm/s) suggests a distortion of the coordination polyhedron of iron ions in the Fe x Mn1 ? x S compounds.  相似文献   

20.
The weak variation of the magnetic bulk susceptibility of Pd1–x Ag x with temperature T and silver mole fractionx within 0.5x1 has been investigated in the range 5KT400K. Experimental evidence can be given for an intersection point of the susceptibility isotherms (T=const,x) atx=0.55. The observed dependence of on T andx is interpreted by means of a semiphenomenological alloy susceptibility function (T,x).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号