首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Any (measurable) function K from Rn to R defines an operator K acting on random variables X by K(X) = K(X1,..., Xn), where the Xj are independent copies of X. The main result of this paper concerns continuous selectors H, continuous functions defined in Rn and such that H(x1, x2,..., xn) ∈ {x1, x2,..., xn}. For each such continuous selector H (except for projections onto a single coordinate) there is a unique point ωH in the interval (0, 1) so that, for any random variable X, the iterates H(N) acting on X converge in distribution as N → ∞ to the ωH-quantile of X.  相似文献   

2.
We investigate the pair of matrix functional equations G(x)F(y) = G(xy) and G(x)G(y) = F(y/x), featuring the two independent scalar variables x and y and the two N×N matrices F(z) andG(z) (with N an arbitrary positive integer and the elements of these two matrices functions of the scalar variable z). We focus on the simplest class of solutions, i.e., on matrices all of whose elements are analytic functions of the independent variable. While in the scalar (N = 1) case this pair of functional equations only possess altogether trivial constant solutions, in the matrix (N > 1) case there are nontrivial solutions. These solutions satisfy the additional pair of functional equations F(x)G(y) = G(y/x) andF(x)F(y) = F(xy), and an endless hierarchy of other functional equations featuring more than two independent variables.  相似文献   

3.
Let ξ(t), t ∈ [0, T],T > 0, be a Gaussian stationary process with expectation 0 and variance 1, and let η(t) and μ(t) be other sufficiently smooth random processes independent of ξ(t). In this paper, we obtain an asymptotic exact result for P(sup t∈[0,T](η(t)ξ(t) + μ(t)) > u) as u→∞.  相似文献   

4.
The invisibility graph I(X) of a set X ? R d is a (possibly infinite) graph whose vertices are the points of X and two vertices are connected by an edge if and only if the straight-line segment connecting the two corresponding points is not fully contained in X. We consider the following three parameters of a set X: the clique number ω(I(X)), the chromatic number χ(I(X)) and the convexity number γ(X), which is the minimum number of convex subsets of X that cover X.We settle a conjecture of Matou?ek and Valtr claiming that for every planar set X, γ(X) can be bounded in terms of χ(I(X)). As a part of the proof we show that a disc with n one-point holes near its boundary has χ(I(X)) ≥ log log(n) but ω(I(X)) = 3.We also find sets X in R5 with χ(X) = 2, but γ(X) arbitrarily large.  相似文献   

5.
A plane domain Ω is convex in the positive direction if for every ωΩ, the entire half-line {ω + t: t ≥ 0} is contained in Ω. Suppose that h maps the unit disk onto such a domain Ω with the normalization h(0) = 0 and limt→∞h?1(h(z) + t) = 1. We show that if ∠limz→?1 Re h(z) = ?∞ and ∠limz→?1(1 + z)h′(z) = ν ∈ (0, +∞), then Ω contains a maximal horizontal strip of width πν. We also prove a converse statement. These results provide a solution to a problem posed by Elin and Shoikhet in connection with semigroups of holomorphic functions.  相似文献   

6.
If R is a regular and semiartinian ring, it is proved that the following conditions are equivalent: (1) R is unit-regular, (2) every factor ring of R is directly finite, (3) the abelian group K O(R) is free and admits a basis which is in a canonical one to one correspondence with a set of representatives of simple right R-modules. For the class of semiartinian and unit-regular rings the canonical partial order of K O(R) is investigated. Starting from any partially ordered set I, a special dimension group G(I) is built and a large class of semiartinian and unit-regular rings is shown to have the corresponding K O(R) order isomorphic to G(P r i m R ), where P r i m R is the primitive spectrum of R. Conversely, if I is an artinian partially ordered set having a finite cofinal subset, it is proved that the dimension group G(I) is realizable as K O(R) for a suitable semiartinian and unit-regular ring R.  相似文献   

7.
In L 2(?3;?3), we consider a self-adjoint operator ? ε , ε > 0, generated by the differential expression curl η(x/ε)?1 curl??ν(x/ε) div. Here the matrix function η(x) with real entries and the real function ν(x) are periodic with respect to some lattice, are positive definite, and are bounded. We study the behavior of the operators cos(τ? ε 1/2 ) and ? ε ?1/2 sin(τ? ε 1/2 ) for τ ∈ ? and small ε. It is shown that these operators converge to cos(τ(?0)1/2) and (?0)?1/2 sin(τ(?0)1/2), respectively, in the norm of the operators acting from the Sobolev space H s (with a suitable s) to ?2. Here ?0 is an effective operator with constant coefficients. Error estimates are obtained and the sharpness of the result with respect to the type of operator norm is studied. The results are used for homogenizing the Cauchy problem for the model hyperbolic equation ? τ 2 v ε = ?? ε v ε , div v ε = 0, appearing in electrodynamics. We study the application to a nonstationary Maxwell system for the case in which the magnetic permeability is equal to 1 and the dielectric permittivity is given by the matrix η(x/ε).  相似文献   

8.
Let U be the quantum group and f be the Lusztig’s algebra associated with a symmetrizable generalized Cartan matrix. The algebra f can be viewed as the positive part of U. Lusztig introduced some symmetries T i on U for all iI. Since T i (f) is not contained in f, Lusztig considered two subalgebras i f and i f of f for any iI, where i f={xf | T i (x) ∈ f} and \({^{i}\mathbf {f}}=\{x\in \mathbf {f}\,\,|\,\,T^{-1}_{i}(x)\in \mathbf {f}\}\). The restriction of T i on i f is also denoted by \(T_{i}:{_{i}\mathbf {f}}\rightarrow {^{i}\mathbf {f}}\). The geometric realization of f and its canonical basis are introduced by Lusztig via some semisimple complexes on the variety consisting of representations of the corresponding quiver. When the generalized Cartan matrix is symmetric, Xiao and Zhao gave geometric realizations of Lusztig’s symmetries in the sense of Lusztig. In this paper, we shall generalize this result and give geometric realizations of i f, i f and \(T_{i}:{_{i}\mathbf {f}}\rightarrow {^{i}\mathbf {f}}\) by using the language ’quiver with automorphism’ introduced by Lusztig.  相似文献   

9.
We consider a random process in a spatial-temporal homogeneous Gaussian field V (q , t) with the mean E V = 0 and the correlation function W(|q ? q′|, |t ? t′|) ≡ E[V (q, t)V (q′, t′)], where \( \bold{q} \in {\mathbb{R}^d} \), \( t \in {\mathbb{R}^{+} } \), and d is the dimension of the Euclidean space \( {\mathbb{R}^d} \). For a “density” G(r, t) of the familiar model of a physical system averaged over all realizations of the random field V, we establish an integral equation that has the form of the Dyson equation. The invariance of the equation under the continuous renormalization group allows using the renormalization group method to find an asymptotic expression for G(r, t) as r → ∞ and t → ∞.  相似文献   

10.
In the convoy movement problem (CMP), a set of convoys must be routed from specified origins to destinations in a transportation network, represented by an undirected graph. Two convoys may not cross each other on the same edge while travelling in opposing directions, a restriction referred to as blocking. However, convoys are permitted to follow each other on the same edge, with a specified headway separating them, but no overtaking is permitted. Further, the convoys to be routed are distinguished based on their length. Particle convoys have zero length and are permitted to traverse an edge simultaneously, whereas convoys with non-zero length have to follow each other, observing a headway. The objective is to minimize the total time taken by convoys to travel from their origins to their destinations, given the travel constraints on the edges. We consider an online version of the CMP where convoy demands arise dynamically over time. For the special case of particle convoys, we present an algorithm that has a competitive ratio of 3 in the worst case and (5/2) on average. For the particle convoy problem, we also present an alternate, randomized algorithm that provides a competitive ratio of (√13?1). We then extend the results to the case of convoys with length, which leads to an algorithm with an O(T+CL) competitive ratio, where T={Max e t(e)}/{Min e t(e)}, C is the maximum congestion (the number of distinct convoy origin–destination pairs that use any edge e) and L={Max c L(c)}/{Min c L(c)}; here L(c)>0 represents the time-headway to be observed by any convoy that follows c and t(e) represents the travel time for a convoy c on edge e.  相似文献   

11.
We study the inverse problem of the reconstruction of the coefficient ?(x, t) = ?0(x, t) + r(x) multiplying ut in a nonstationary parabolic equation. Here ?0(x, t) ≥ ?0 > 0 is a given function, and r(x) ≥ 0 is an unknown function of the class L(Ω). In addition to the initial and boundary conditions (the data of the direct problem), we pose the problem of nonlocal observation in the form ∫0Tu(x, t) (t) = χ(x) with a known measure (t) and a function χ(x). We separately consider the case (t) = ω(t)dt of integral observation with a smooth function ω(t). We obtain sufficient conditions for the existence and uniqueness of the solution of the inverse problem, which have the form of ready-to-verify inequalities. We suggest an iterative procedure for finding the solution and prove its convergence. Examples of particular inverse problems for which the assumptions of our theorems hold are presented.  相似文献   

12.
An adapted orthonormal frame (f1(ξ),f2(ξ),f3(ξ)) on a space curve r(ξ), ξ ∈ [ 0, 1 ] comprises the curve tangent \(\mathbf {f}_{1}(\xi ) =\mathbf {r}^{\prime }(\xi )/|\mathbf {r}^{\prime }(\xi )|\) and two unit vectors f2(ξ),f3(ξ) that span the normal plane. The variation of this frame is specified by its angular velocity Ω = Ω1f1 + Ω2f2 + Ω3f3, and the twist of the framed curve is the integral of the component Ω1 with respect to arc length. A minimal twist frame (MTF) has the least possible twist value, subject to prescribed initial and final orientations f2(0),f3(0) and f2(1),f3(1) of the normal–plane vectors. Employing the Euler–Rodrigues frame (ERF) — a rational adapted frame defined on spatial Pythagorean–hodograph curves — as an intermediary, an exact expression for an MTF with Ω1 = constant is derived. However, since this involves rather complicated transcendental terms, a construction of rational MTFs is proposed by the imposition of a rational rotation on the ERF normal–plane vectors. For spatial PH quintics, it is shown that rational MTFs compatible with the boundary conditions can be constructed, with only modest deviations of Ω1 about the mean value, by a rational quartic normal–plane rotation of the ERF. If necessary, subdivision methods can be invoked to ensure that the rational MTF is free of inflections, or to more accurately approximate a constant Ω1. The procedure is summarized by an algorithm outline, and illustrated by a representative selection of computed examples.  相似文献   

13.
We obtain an integro-local limit theorem for the sum S(n) = ξ(1)+?+ξ(n) of independent identically distributed random variables with distribution whose right tail varies regularly; i.e., it has the form P(ξt) = t L(t) with β > 2 and some slowly varying function L(t). The theorem describes the asymptotic behavior on the whole positive half-axis of the probabilities P(S(n) ∈ [x, x + Δ)) as x → ∞ for a fixed Δ > 0; i.e., in the domain where the normal approximation applies, in the domain where S(n) is approximated by the distribution of its maximum term, as well as at the “junction” of these two domains.  相似文献   

14.
Let ξ(t) be a zero-mean stationary Gaussian process with the covariance function r(t) of Pickands type, i.e., r(t) = 1 ? |t| α + o(|t| α ), t → 0, 0 < α ≤ 2, and η(t), ζ(t) be periodic random processes. The exact asymptotic behavior of the probabilities P(max t∈[0,T] η(t)ξ(t) > u), P(max t∈[0,T] (ξ(t) + η(t)) > u) and P(max t∈[0,T] (η(t)ξ(t) + ζ(t)) > u) is obtained for u → ∞ for any T > 0 and independent ξ(t), η(t), ζ(t).  相似文献   

15.
LetM be a connected two-dimensional Stein manifold withH 2(M,Z)=0 andSM a discrete subset withS≠ Ø. SetX:=M/S. Fix an integerr≥2. Then there exists a rankr vector bundleE onX such that there is no line bundleL onX with a non-zero mapLE.  相似文献   

16.
For drifted Brownian motion X(t) = x-µ t + B t (µ > 0) starting from x > 0, we study the joint distribution of the first-passage time below zero ,t(x), and the first-passage area ,A(x), swept out by X till the time t(x). In particular, we establish differential equations with boundary conditions for the joint moments E[t(x) m A(x) n ], and we present an algorithm to find recursively them, for any m and n. Finally, the expected value of the time average of X till the time t(x) is obtained.  相似文献   

17.
Let M be a smooth compact oriented Riemannian manifold, and let Δ M be the Laplace–Beltrami operator on M. Say \({0 \neq f \in \mathcal{S}(\mathbb {R}^+)}\) , and that f (0)  =  0. For t  >  0, let K t (x, y) denote the kernel of f (t 2 Δ M ). We show that K t is well-localized near the diagonal, in the sense that it satisfies estimates akin to those satisfied by the kernel of the convolution operator f (t 2Δ) on \({\mathbb {R}^n}\) . We define continuous \({\mathcal {S}}\)-wavelets on M, in such a manner that K t (x, y) satisfies this definition, because of its localization near the diagonal. Continuous \({\mathcal {S}}\)-wavelets on M are analogous to continuous wavelets on \({\mathbb {R}^n}\) in \({\mathcal {S}}\) (\({\mathbb {R}^n}\)). In particular, we are able to characterize the Hölder continuous functions on M by the size of their continuous \({\mathcal {S}}\)-wavelet transforms, for Hölder exponents strictly between 0 and 1. If M is the torus \({\mathbb T^2}\) or the sphere S 2, and f (s)  =  se ?s (the “Mexican hat” situation), we obtain two explicit approximate formulas for K t , one to be used when t is large, and one to be used when t is small.  相似文献   

18.
Let X i = {X i (t), tT} be i.i.d. copies of a centered Gaussian process X = {X(t), tT} with values in\( {\mathbb{R}^d} \) defined on a separable metric space T. It is supposed that X is bounded. We consider the asymptotic behavior of convex hulls
$ {W_n} = {\text{conv}}\left\{ {{X_1}(t), \ldots, {X_n}(t),\,\,t \in T} \right\} $
and show that, with probability 1,
$ \mathop {{\lim }}\limits_{n \to \infty } \frac{1}{{\sqrt {{2\ln n}} }}{W_n} = W $
(in the sense of Hausdorff distance), where the limit shape W is defined by the covariance structure of X: W = conv{K t , tT}, Kt being the concentration ellipsoid of X(t). We also study the asymptotic behavior of the mathematical expectations E f(W n ), where f is an homogeneous functional.
  相似文献   

19.
We consider the problem of searching for a best LAD-solution of an overdetermined system of linear equations Xa=z, X∈?m×n, mn, \(\mathbf{a}\in \mathbb{R}^{n}, \mathbf {z}\in\mathbb{R}^{m}\). This problem is equivalent to the problem of determining a best LAD-hyperplane x?a T x, x∈? n on the basis of given data \((\mathbf{x}_{i},z_{i}), \mathbf{x}_{i}= (x_{1}^{(i)},\ldots,x_{n}^{(i)})^{T}\in \mathbb{R}^{n}, z_{i}\in\mathbb{R}, i=1,\ldots,m\), whereby the minimizing functional is of the form
$F(\mathbf{a})=\|\mathbf{z}-\mathbf{Xa}\|_1=\sum_{i=1}^m|z_i-\mathbf {a}^T\mathbf{x}_i|.$
An iterative procedure is constructed as a sequence of weighted median problems, which gives the solution in finitely many steps. A criterion of optimality follows from the fact that the minimizing functional F is convex, and therefore the point a ?∈? n is the point of a global minimum of the functional F if and only if 0?F(a ?).
Motivation for the construction of the algorithm was found in a geometrically visible algorithm for determining a best LAD-plane (x,y)?αx+βy, passing through the origin of the coordinate system, on the basis of the data (x i ,y i ,z i ),i=1,…,m.  相似文献   

20.
We consider the asymptotic behavior of the values P(S > x), E(S 1{S>x}), and E(S | S > x). Here S = θ1X1 + θ2X2 + · · · + θnXn is a randomly weighted sum of the basic random variables X1,X2, . . . , Xn, which follow some special dependence structure, and 1, θ2, . . . , θn} is a collection of nonnegative and arbitrarily dependent random weights; the collections {X1,X2, . . .,Xn} and 1, θ2, . . . , θn} are supposed to be independent. We derive asymptotic formulas in the case where the number of summands n is fixed and the distributions of the basic random variables are dominatedly varying.We apply them to some values related to the risk measures of certain weighted sums.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号