首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A series of pH‐triggered charge‐reversal polyurethane copolymers (PS‐PUs) containing methoxyl‐poly(ethylene glycol) (mPEG), carboxylic acid groups, and piperazine groups is presented in this work. The obtained PS‐PUs copolymers can form into stable micelles at pH 7.4, which response to a narrow pH change (5.5–7.5) and show a tunable pH‐triggered charge‐reversal property. Doxorubicin (DOX) is encapsulated into the PS‐PU micelles as a model drug. The drug release of DOX‐loaded PS‐PU micelles shows an obviously stepped‐up with reducing the pH. Meanwhile, it is found that the charge‐reversal property can improve the cellular uptake behavior and intracellular drug release in both HeLa cells and MCF‐7 cells. Additionally, the time‐dependent cytotoxicity of the DOX‐loaded PS‐PU micelles is confirmed by MTT assay. Attributed to the tunable charge‐reversal property through changing the molar ratio of piperazine/carboxyl, the PS‐PU micelles will be a potential candidate as an intelligent drug delivery system in future studies.

  相似文献   


2.
A visible light and pH responsive anticancer drug delivery system based on polymer‐coated mesoporous silica nanoparticles (MSNs) has been developed. Perylene‐functionalized poly(dimethylaminoethyl methacrylates) sensitive to visible light and pH are electrostatically attached on the surface of MSNs to seal the nanopores. Stimulation of visible light and acid can unseal the nanopores to induce controlled drug release from the MSNs. More interestingly, the release can be enhanced under the combined stimulation of the dual‐stimuli. The synergistic effect of visible light and acid stimulation on the efficient release of anticancer drugs from the nanohybrids endows the system with great potential for cancer therapy.

  相似文献   


3.
For efficient treatment of multidrug‐resistance (MDR) breast cancer cells, design of biocompatible mixed micelles with diverse functional moieties and superior stability is needed for targeted delivery of chemical drugs. In this study, polypropylene glycol (PPG)‐grafted hyaluronic acid (HA) copolymers (PPG‐g‐HA) are used to make mixed micelles with different amounts of pluronic L61, named PPG‐g‐HA/L61 micelles. Optimized PPG‐g‐HA/L61 micelles with 3% pluronic L61 exhibit great stability in aqueous solution, superior biocompatibility, and significantly increased uptake into MCF‐7 MDR cells via HA–CD44‐specific interactions when compared to free doxorubicin (DOX) and other types of micelles. In addition, DOX in PPG‐g‐HA/L61 micelles with 3% pluronic L61 have toxicity in MCF‐7 MDR cells but significantly lower toxicity in fibroblast L929 cells compared to free DOX. Thus, PPG‐g‐HA/L61 micelles with 3% pluronic L61 content can be a promising nanocarrier to overcome MDR and release DOX in a hyaluronidase‐sensitive manner without any toxicity to normal cells.

  相似文献   


4.
Previously synthesized amphiphilic diblock copolymers with pendant dendron moieties have been investigated for their potential use as drug carriers to improve the delivery of an anticancer drug to human breast cancer cells. Diblock copolymer (P71D3)‐based micelles effectively encapsulate the doxorubicin (DOX) with a high drug‐loading capacity (≈95%, 104 DOX molecules per micelle), which is approximately double the amount of drug loaded into the diblock copolymer (P296D1) vesicles. DOX released from the resultant P71D3/DOX micelles is approximately 1.3‐fold more abundant, at a tumoral acidic pH of 5.5 compared with a pH of 7.4. The P71D3/DOX micelles also enhance drug potency in breast cancer MDA‐MB‐231 cells due to their higher intracellular uptake, by approximately twofold, compared with the vesicular nanocarrier, and free DOX. Micellar nanocarriers are taken up by lysosomes via energy‐dependent processes, followed by the release of DOX into the cytoplasm and subsequent translocation into the nucleus, where it exert its cytotoxic effect.

  相似文献   


5.
An efficiently siRNA transporting nanocarrier still remains to be developed. In this study, utilizing the dual stimulus of acid tumor extracellular environment and redox effect of glutathione in the cytosol, a new siRNA transporting system combining triple effects of folate targeting, acid sensitive polymer micelles, and bio‐reducible disulfide bond linked siRNA‐cell penetrating peptides (CPPs) conjugate is developed to suppress c‐myc gene expression of breast cancer (MCF‐7 cells) both in vitro and in vivo. Subsequent research demonstrates that the vesicle has particle size of about 100 nm and siRNA entrapment efficiency of approximately 80%. In vitro studies verified over 90% of encapsulated siRNA‐CPPs can be released and the vesicle shows higher cellular uptake in response to the tumorous zone. Determination of gene expression at both mRNA and protein levels indicates the constructed vesicle exhibited enhanced cancer cell apoptosis and improved therapeutic efficacy in vitro and in vivo.

  相似文献   


6.
Furoxans, or 1,2,5‐oxadiazole‐N‐oxides, are a class of nitric oxide (NO)‐donating compounds that release NO in response to thiol‐containing molecules. In this study, polymeric micelles bearing furoxan moieties are prepared from an amphiphilic block copolymer consisting of a hydrophobic furoxan‐bearing block and a hydrophilic poly(N‐acryloylmorpholine) block. The block copolymer is prepared using a combination of the reversible addition–fragmentation chain transfer polymerization and the copper‐catalyzed Huisgen cycloaddition techniques. The block copolymers form spherical micelles with a diameter of 50 nm by self‐assembly in water. The micelles release NO in response to cysteine and show improved stability against hydrolytic decomposition. Furthermore, the micelles show a synergistic anti‐proliferative effect with ibuprofen in human colon cancer cells.

  相似文献   


7.
Successful application of gene silencing approaches critically depends on systems that are able to safely and efficiently deliver genetic material such as small interfering RNA (siRNA). Due to their beneficial well‐defined dendritic nanostructure, self‐assembling dendrimers are emerging as promising nanovectors for siRNA delivery. However, these kinds of vectors are plagued with stability issues, especially when considered for in vivo applications. Therefore, in the present study, disulfide‐based temporarily fixed micelles are developed that can degrade upon reductive conditions, and thus lead to efficient cargo release. In detail, lipoic acid‐derived crosslinked micelles are synthesized based on small polymerizable dendritic amphiphiles. Particularly, one candidate out of this series is able to efficiently release siRNA due to its redox‐responsive biodegradable profile when exposed to simulated intracellular environments. As a result, the reduction‐triggered disassembly leads to potent gene silencing. In contrast, noncrosslinkable, structurally related constructs fails under the tested assay conditions, thereby confirming the applied rational design approach and demonstrating its large potential for future in vivo applications.

  相似文献   


8.
Photo‐crosslinking and self‐healing have received considerable attention for the design of intelligent materials. A novel photostimulated, self‐healing, and cytocompatible hydrogel system is reported. A coumarin methacrylate crosslinker is synthesized to modify the polyacrylamide‐based hydrogels. With the [2+2] cyclo‐addition of coumarin moieties, the hydrogels exhibit excellent self‐healing capacity when they are exposed to light with wavelengths at 280 and 365 nm, respectively. To enhance cell compatibility, a poly (amidoamine) crosslinker is also synthesized. Variations in light exposure times and irradiation wavelengths are found to alter the self‐healing property of the hydrogels. The hydrogels are shown to induce a regular cellular pattern. The hydrogels are used to regulate bone marrow stromal cells differentiation. The relative mRNA expressions are recorded to monitor the osteogenic differentiation of the cells.

  相似文献   


9.
Conventional cancer treatments such as chemotherapy, radiotherapy, or combination of these two result in side effects, which lower the quality of life of the patients. To overcome problems with these methods, altering the drug properties by conjugating them to carrier polymers has emerged. Such polymeric carriers also hold the potential to make tumor cells more sensitive to radiation therapy. Herein, poly(p‐phenylene) (PPP) polymer with poly(ethylene glycol) (PEG) chains and primary amino groups (PPP‐NH2g‐PEG) is synthesized and conjugated with anticancer drug Doxorubicin (DOX). pH dependent drug release experiments are performed at pH 5.3 and pH 7.4, respectively. Cell viability studies on human cervix adenocarcinoma cells show that lower doses of DOX inhibit cell proliferation when conjugated with nontoxic doses of PPP‐NH2g‐PEG polymer. Additionally, PPP‐NH2g‐PEG/Cys/DOX bioconjugate significantly increases radiosensitive properties of DOX. It is possible to use lower doses of DOX when conjugated to PPP‐NH2g‐PEG in combination with radiotherapy.

  相似文献   


10.
This study reports a series of novel amino acid based dual‐responsive hydrogels. Prepared by a facile one‐pot 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide (EDC) coupling reaction, the solid content, structure, and mechanical behavior of hydrogels could be easily adjusted by changing the concentrations of the polymers and the crosslinkers. With pH‐responsive anionic pseudo‐peptides as backbones and disulfide‐containing l ‐cystine dimethyl ester as crosslinkers, these hydrogels are able to collapse and form relatively compact structure at an acidic pH, while swelled and partly dissociated at a neutral pH. Further addition of dithiothreitol (DTT) facilitated complete degradation of hydrogels. The high loading efficiency, rapid but complete triggered‐release, and good biocompatibility make these hydrogels promising candidates for oral delivery.

  相似文献   


11.
A collagen sheet with highly aligned collagen fibers is fabricated by continuous cyclic stretch. The rearrangement of the collagen fibers depends on the different process parameters of the cyclic stretch, including magnitude, frequency, and period of stretch. The collagen fibers are aligned perpendicularly to the direction of the stretch. Corneal stromal cells and smooth muscle cells cultivated on the highly aligned collagen sheet show alignment along the collagen fibers without the stretch during culture. Thus, the sheet can be a suitable scaffold for use in regenerative medicine.

  相似文献   


12.
Pinosylvin is a natural stilbenoid known to exhibit antibacterial bioactivity against foodborne bacteria. In this work, pinosylvin is chemically incorporated into a poly(anhydride‐ester) (PAE) backbone via melt‐condensation polymerization, and characterized with respect to its physicochemical and thermal properties. In vitro release studies demonstrate that pinosylvin‐based PAEs hydrolytically degrade over 40 d to release pinosylvin. Pseudo‐first order kinetic experiments on model compounds, butyric anhydride and 3‐butylstilbene ester, indicate that the anhydride linkages hydrolyze first, followed by the ester bonds to ultimately release pinosylvin. An antibacterial assay shows that the released pinosylvin exhibit bioactivity, while in vitro cytocompatibility studies demonstrate that the polymer is noncytotoxic toward fibroblasts. These preliminary findings suggest that the pinosylvin‐based PAEs can serve as food preservatives in food packaging materials by safely providing antibacterial bioactivity over extended time periods.

  相似文献   


13.
The repair of large crushed or sectioned segments of peripheral nerves remains a challenge in regenerative medicine due to the complexity of the biological environment and the lack of proper biomaterials and architecture to foster reconstruction. Traditionally such reconstruction is only achieved by using fresh human tissue as a surrogate for the absence of the nerve. However, recent focus in the field has been on new polymer structures and specific biofunctionalization to achieve the goal of peripheral nerve regeneration by developing artificial nerve prostheses. This review presents various tested approaches as well their effectiveness for nerve regrowth and functional recovery.

  相似文献   


14.
Targeting nanoparticles for drug delivery has great potential for improving efficacy and reducing side effects from systemic toxicity. New developments in the assembly of materials afford the opportunity to expose cryptic targeting domains in tissue‐specific microenvironments in which certain proteases are expressed. Here, recombinant proteins are designed to combine the responsiveness to environmental proteases with specific targeting. Materials made recombinantly allow complete control over amino acid sequence, in which each molecule is identically functionalized. Previously, oleosin, a naturally occurring plant protein that acts as a surfactant, has been engineered to self‐assemble into spherical micelles—a useful structure for drug delivery. To make oleosins that are locally activated to bind receptors, oleosin is genetically modified to incorporate the integrin‐binding motif RGDS just behind a domain cleavable by thrombin. The resulting modified oleosin self‐assembles into spherical micelles in aqueous environments, with the RGDS motif protected by the thrombin‐cleavable domain. Upon the addition of thrombin, the RGDS is exposed and the binding of the spherical micelles to breast cancer cells is increased fourfold.

  相似文献   


15.
Amphiphilic triblock copolymers mPEG‐b‐PMAC‐b‐PCL are synthesized using methoxyl poly(ethylene glycol), cyclic carbonic ester monomer including acryloyl group, and ε‐caprolactone. Copolymers are self‐assembled into core–shell micelles in aqueous solution. Thiolated hemoglobin (Hb) is conjugated with micelles sufficiently through thiol Michael addition reaction to form hemoglobin nanoparticles (HbNs) with 200 nm in diameter. The conjugation of Hb onto the micelle surface is further confirmed by X‐ray photoelectron spectroscopy. Feeding ratio of copolymer micelles to Hb at 1:3 would lead to the highest hemoglobin loading efficiency 36.7 wt%. The UV results demonstrate that the gas transporting capacity of HbNs is well remained after Hb is conjugated with polymeric micelles. Furthermore, the obtained HbNs have no obvious detrimental effects on blood components in vitro. This system may thus have great potential as one of the candidates to be developed as oxygen carriers and provide a reference for the modification of protein drugs.

  相似文献   


16.
Polyelectrolyte block copolymer micelles assembled thin film is switched in response to local photocatalytic reactions on titanium dioxide, resulting in a layer of variable height, stiffness in response to visible light irradiation. Preosteoblasts migrate toward stiffer side of the substrates.

  相似文献   


17.
The design of drug delivery systems capable of efficiently delivering poorly soluble drugs to target sites still remains a major challenge. Such materials require several different functionalities; typically, these materials should be biodegradable and nontoxic, nonimmunogenic, responsive to their environment, and soluble in aqueous solution while retaining the ability to solubilize hydrophobic drugs. Here, a polypeptide‐polymer hybrid of elastin‐like polypeptides (ELPs) and poly(2‐oxazoline)s (POx) is reported. This paper describes the chemical synthesis, physical characteristics, and drug loading potential of these novel hybrid macromolecules. A novel method is introduced for terminal functionalization of POx with protected maleimide moieties. Following recovery of the maleimide group via a retro Diels–Alder reaction, the consecutive Michael addition of thiol‐functionalized ELPs yields the desired protein‐polymer conjugate. These conjugates form nanoparticles in aqueous solution capable of solubilizing the anti‐cancer drug paclitaxel with up to 8 wt% loading.

  相似文献   


18.
Reactive oxygen species (ROS) play important roles in cell signaling pathways, while increased production of ROS may disrupt cellular homeostasis, giving rise to oxidative stress and a series of diseases. Utilizing these cell‐generated species as triggers for selective tuning polymer structures and properties represents a promising methodology for disease diagnosis and treatment. Recently, significant progress has been made in fabricating biomaterials including nanoparticles and macroscopic networks to interact with this dynamic physiological condition. These ROS‐responsive platforms have shown potential in a range of biomedical applications, such as cancer targeted drug delivery systems, cell therapy platforms for inflammation related disease, and so on.

  相似文献   


19.
In this study, a three layered poly (ε‐caprolactone) (PCL) graft (tPCL) was fabricated by electrospinning PCL and electrospraying poly (ethylene oxide) (PEO), which has a thin dense inner layer, a loose middle layer, and a dense outer layer. Regular PCL grafts (rPCL) with only a dense layer were used as control. In vivo evaluation was performed in rabbit carotid artery. Enhanced cell infiltration, rapid regeneration of endothelium and smooth muscle layers, and increased elastin deposition were observed within the tPCL graft wall. After 3 months, tPCL grafts showed faster PCL degradation than the rPCL grafts. Infiltrated macrophages in the tPCL grafts secreted higher level of monocyte chemoattractant protein‐1 (MCP‐1) and vascular endothelial growth factor (VEGF) which enhanced vascular regeneration. In conclusion, the tPCL graft may be a useful vascular prosthesis and worth for further investigation.

  相似文献   


20.
Injectable and biodegradable supramolecular hydrogel mPECT NP/α‐CDgel composed of high‐concentration nanoparticle dispersion (≤20% W/V) and α‐cyclodextrins (α‐CD) are prepared by a two‐level physical cross‐linking using amphiphilic block polymer methoxy poly(ethylene glycol)‐b‐poly(ε‐caprolactone‐co‐1,4,8‐trioxa[4.6]spiro‐9‐undecanone) (mPECT) and α‐CD. The gelation behavior depends on the concentration of nanoparticles and α‐CD. The viscoelasticity and shear thinning of mPECT NP/α‐CDgel are confirmed. In vitro hydrogel erosion is demonstrated to be mainly a concentration‐dependent dissociation process with general release of discrete mPECT nanoparticles about 50 nm that can be easily taken up by cells. The in vitro release behavior can be modulated by changing the concentration of nanoparticles or α‐CD. In vitro and in vivo cytotoxicity study demonstrates its biocompatibility and biosafety. Gel formation after subcutaneous injection is also confirmed and mPECT NP/α‐CDgel shows about 2 weeks retention time. This work validates the potential application for this supramolecular hydrogel in local and sustained delivery of nanoparticles.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号