首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Here, we demonstrate that platelet graphite nanofibers (PGNFs) exhibit fast heterogeneous electron‐transfer rates for a wide variety of compounds such as FeCl3, ferrocyanide, dopamine, uric acid, ascorbic acid, and the reduced form of β‐nicotinamide adenine dinucleotide. The electrochemical properties of PGNFs are superior to those of multiwalled carbon nanotubes (MWCNTs) or graphite microparticles (GMPs). Transmission electron microscopy and Raman spectroscopy reveal that this arises from the unique graphene sheet orientation of such platelet nanofibers, which accounts for their unparalleled high ratio of graphene edge planes versus basal planes.  相似文献   

2.
Graphene sheets were assembled on anion exchange resin (AER) microspheres based on the electrostatic interactions between graphene oxide and AER and subsequent chemical reduction. The prepared graphene‐coated AER microspheres were characterized by scanning electron microscopy, X‐ray diffraction, and Fourier transform infrared spectroscopy. They were then embedded in the bores of pipette tips to fabricate disposable electrodes for electrochemical sensing. The workability and performance of the novel electrodes were examined by analyzing the electrochemical behavior of the electrodes for the sensing of ascorbic acid, dopamine, uric acid, acetaminophen, aniline, and glucose by cyclic voltammetry and amperometry. The advantages of the electrodes include ease of fabrication, low cost, pronounced electrocatalytic activity, and rapid response. Thus, they hold great promise for a wide range of applications.  相似文献   

3.
We report the results of the experimental study of the preparation of hybrid porous polymer material carrying gold nanorods (NRs) on the surface of pores. The material was prepared by utilizing two effects occurring concurrently: the photoinitiated polymerization‐induced phase separation in the polymer–solvent mixture and the migration of the NRs to the interface between the polymer and the porogen solvent. We show that the enrichment of the interface with the NRs is enhanced at high polymerization rate leading to the rapid phase separation. By contrast, more rapid increase in viscosity achieved at high polymerization rate does not have a significant effect on the segregation of NRs to the surface of pores.

  相似文献   


4.
Sulfur/graphene nanocomposite material has been prepared by incorporating sulfur into the graphene frameworks through a melting process. Field‐emission scanning electron microscope analysis shows a homogeneous distribution of sulfur in the graphene nanosheet matrix. The sulfur/graphene nanocomposite exhibits a super‐high lithium‐storage capacity of 1580 mAh g?1 and a satisfactory cycling performance in lithium–sulfur cells. The enhancement of the reversible capacity and cycle life could be attributed to the flexible graphene nanosheet matrix, which acts as a conducting medium and a physical buffer to cushion the volume change of sulfur during the lithiation and delithiation process. Graphene‐based nanocomposites can significantly improve the electrochemical performance of lithium–sulfur batteries.  相似文献   

5.
In order to explore the effect of graphene surface chemistry on electrochemical performance based on polyaniline–graphene hybrid material electrodes, four different polyaniline–graphene nanocomposites were fabricated with graphene oxide, reduced graphene oxide, aminated graphene and sulfonated graphene as carriers, respectively. The nanocomposites feature various structures and morphologies, which could be used to more deeply understand the morphology and structure effects caused by surface chemistry on electrochemical performance. The experimental results reveal that functionalized electronegative graphene was conducive to the vertical and neat growth of polyaniline (PANI) nanorods. The array architecture endowed the PANI–GS nanocomposite with a large ion‐accessible surface area and high‐efficiency electron‐ and ion‐transport pathways. Meanwhile, the introduction of sulfonic acid functional groups accelerated the redox reaction with doping and dedoping of the PANI. Thereby, the PANI–GS nanocomposite exhibited a high specific capacitance of 863.2 F g?1 at a current density of 0.2 A g?1 and the excellent rate capability of 67.4 % (581.6 F g?1 at 5 A g?1), which were much better than the other three nanocomposites produced.  相似文献   

6.
宋英攀  冯苗  詹红兵 《化学进展》2012,(9):1665-1673
将石墨烯与其他纳米材料复合,是一种拓展或增强其应用的有效方法。借助不同组分间的协同作用,可以改善石墨烯的电学、化学和电化学性质,拓展和增强石墨烯的电化学效应,为固定氧化还原酶,实现直接电化学提供新型、高效的平台,应用于第三代电化学生物传感器的设计和制备,对葡萄糖、胆固醇、血红蛋白、DNA、H2O2、O2、小生物分子等的检测显示出了优异的灵敏度和选择性。本文综述了基于石墨烯构筑的纳米复合材料在电化学生物传感器中的应用研究,包括石墨烯与贵金属、金属氧化物/半导体纳米粒子、高分子、染料分子、离子液体、生物分子等的纳米复合材料,并对石墨烯材料在电化学领域的发展方向和应用前景进行了展望。  相似文献   

7.
This work reports on the first attempt to prepare bioderived polymer films by blending polylactic acid (PLA) and poly(dodecylene furanoate) (PDoF). This blend, containing 10 wt% PDoF, was filled with reduced graphene oxide (rGO) in variable weight fractions (from 0.25 to 2 phr), and the resulting nanocomposites were characterized to assess their microstructural, thermal, mechanical, optical, electrical, and gas barrier properties. The PLA/PDoF blend resulted as immiscible, and the addition of rGO, which preferentially segregated in the PDoF phase, resulted in smaller (from 2.6 to 1.6 µm) and more irregularly shaped PDoF domains and in a higher PLA/PDoF interfacial interaction, which suggests the role of rGO as a blend compatibilizer. rGO also increased PLA crystallinity, and this phenomenon was more pronounced when PDoF was also present, thus evidencing a synergism between PDoF and rGO in accelerating the crystallization kinetics of PLA. Dynamic mechanical thermal analysis (DMTA) showed that the glass transition of PDoF, observed at approx. 5 °C, shifted to a higher temperature upon rGO addition. The addition of 10 wt% PDoF in PLA increased the strain at break from 5.3% to 13.0% (+145%), and the addition of 0.25 phr of rGO increased the tensile strength from 35.6 MPa to 40.2 MPa (+13%), without significantly modifying the strain at break. Moreover, rGO decreased the electrical resistivity of the films, and the relatively high percolation threshold (between 1 and 2 phr) was probably linked to the low aspect ratio of rGO nanosheets and their preferential distribution inside PDoF domains. PDoF and rGO also modified the optical transparency of PLA, resulting in a continuous decrease in transmittance in the visible/NIR range. Finally, rGO strongly modified the gas barrier properties, with a remarkable decrease in diffusivity and permeability to gases such as O2, N2, and CO2. Overall, the presented results highlighted the positive and sometimes synergistic role of PDoF and rGO in tuning the thermomechanical and functional properties of PLA, with simultaneous enhancement of ductility, crystallization kinetics, and gas barrier performance, and these novel polymer nanocomposites could thus be promising for packaging applications.  相似文献   

8.
Dopamine (DA) is an important neurotransmitter, which is created and released from the central nervous system. It plays a crucial role in human activities, like cognition, emotions, and response to anything. Maladjustment of DA in human blood serum results in different neural diseases, like Parkinson's and Schizophrenia. Consequently, researchers have started working on DA detection in blood serum, which is undoubtedly a hot research area. Electrochemical sensing techniques are more promising to detect DA in real samples. However, utilizing conventional electrodes for selective determination of DA encounters numerous problems due to the coexistence of other materials, such as uric acid and ascorbic acid, which have an oxidation potential close to DA. To overcome such problems, researchers have put their focus on the modification of bare electrodes. The aim of this review is to present recent advances in modifications of most used bare electrodes with carbonaceous materials, especially graphene, its derivatives, and carbon nanotubes, for electrochemical detection of DA. A brief discussion about the mechanistic phenomena at the electrode interface has also been included in this review.  相似文献   

9.
Graphene oxide (GO)‐based materials offer great potential for biofunctionalization with applications ranging from biosensing to drug delivery. Such biofunctionalization utilizes specific functional groups, typically a carboxyl moiety, as anchoring points for biomolecule. However, due to the fact that the exact chemical structure of GO is still largely unknown and poorly defined (it was postulated to consist of various oxygen‐containing groups, such as epoxy, hydroxyl, carboxyl, carbonyl, and peroxy in varying ratios), it is challenging to fabricate highly biofunctionalized GO surfaces. The predominant anchoring sites (i.e., carboxyl groups) are mainly present as terminal groups on the edges of GO sheets and thus account for only a fraction of the oxygen‐containing groups on GO. Herein, we suggest a direct solution to the long‐standing problem of limited abundance of carboxyl groups on GO; GO was first reduced to graphene and consequently modified with only carboxyl groups grafted perpendicularly to its surface by a rational synthesis using free‐radical addition of isobutyronitrile with subsequent hydrolysis. Such grafted graphene oxide can contain a high amount of carboxyl groups for consequent biofunctionalization, at which the extent of grafting is limited only by the number of carbon atoms in the graphene plane; in contrast, the abundance of carboxyl groups on “classical” GO is limited by the amount of terminal carbon atoms. Such a graphene platform embedded with perpendicularly grafted carboxyl groups was characterized in detail by X‐ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy, and its application was exemplified with single‐nucleotide polymorphism detection. It was found that the removal of oxygen functionalities after the chemical reduction enhanced the electron‐transfer rate of the graphene. More importantly, the introduction of carboxyl groups promoted a more efficient immobilization of DNA probes on the electrode surface and improved the performance of graphene as a biosensor in comparison to GO. The proposed material can be used as a universal platform for biomolecule immobilization to facilitate rapid and sensitive detection of DNA or proteins for point‐of‐care investigations. Such reactive carboxyl groups grafted perpendicularly on GO holds promise for a highly efficient tailored biofunctionalization for applications in biosensing or drug delivery.  相似文献   

10.
采用溶液相牺牲模板法制备中空多孔金纳米粒子(HPAuNPs),并将该材料与还原氧化石墨烯(rGO)复合,用于葡萄糖氧化酶(GOx)在玻碳电极(GCE)表面的有效固定,构建GOx/HPAuNPs/rGO/GCE传感界面。利用扫描和透射电镜、X射线光电子能谱、X射线衍射谱、红外光谱及电化学等方法对材料的形貌与结构,GOx的固定化过程,以及传感器的直接电化学和电催化性能进行表征。结果表明,HPAuNPs和rGO的协同作用能有效促进GOx与电极之间的直接电子转移(DET)。基于GOx/HPAuNPs/rGO/GCE对葡萄糖的良好电催化性能,该方法有效实现了对葡萄糖的高灵敏度检测,其电流响应的线性范围为0.05~7.0 mmol/L,检出限(S/N=3)为16μmol/L。该传感器具有良好的选择性、重现性及稳定性,对实际样品血清中血糖的测定结果令人满意,回收率为98.0%~103%,相对标准偏差不大于5.0%。  相似文献   

11.
采用热聚合法合成石墨烯量子点,再将石墨烯量子点通过π-π作用吸附在聚邻氨基苯酚膜表面,基于石墨烯量子点表面电化学印迹,制备石墨烯量子点-分子印迹传感器检测盐酸罗哌卡因。同时采用原子力显微镜表征石墨烯量子点尺寸,示差脉冲伏安法研究印迹响应机理。安培I~t曲线法发现传感器对盐酸罗哌卡因的响应线性范围为2.0×10-6~6.1×10-4mol/L,检出限(S/N=3)为1.1×10-6mol/L,与未使用石墨烯量子点的分子印迹传感器对比,石墨烯量子点-分子印迹传感器的线性范围变宽,检出限降低,空白加标回收率为91.0%~101%。将传感器用于血浆样品中盐酸罗哌卡因的检测,测得其浓度为4.21×10-6mol/L,高效液相色谱法验证显示该方法的检测结果可靠,可用于临床样品的检测。  相似文献   

12.
In this work, graphene oxide (GO) and its reduced graphene oxide-zinc oxide nanocomposite (rGO-ZnO) was used for the removal of Cr (VI) from aqueous medium. By employing a variety of characterization techniques, morphological and structural properties of the adsorbents were determined. The adsorption study was done by varying concentration, temperature, pH, time, and amount of adsorbent. The results obtained confirmed that rGO-ZnO is a more economical and promising adsorbent for removing Cr (VI) as compared to GO. Kinetic study was also performed, which suggested that sorption of Cr (VI) follows the pseudo-first-order model. For equilibrium study, non-linear Langmuir was found a better fitted model than its linearized form. The maximum adsorption capacity calculated for GO and rGO-ZnO nanocomposite were 19.49 mg/g and 25.45 mg/g, respectively. Endothermic and spontaneous nature of adsorption was detected with positive values of ΔS (change in entropy), which reflects the structural changes happening at the liquid/solid interface.  相似文献   

13.
A biocompatible probe for specific glucose recognition is based on photoinitiated boronate affinity–molecular imprinted polymers (BA‐MIPs). The unique pre‐self‐assembly between glucose and boronic acids creates glucose‐specific memory cavities in the BA‐MIPs coating. As a result, the binding constant toward glucose was enhanced by three orders of magnitude. The BA‐MIPs probe was applied to glucose determination in serum and urine and implanted into plant tissues for low‐destructive and long‐term in vivo continuous glucose monitoring.  相似文献   

14.
Yan Zhang  Jing Zheng  Mandong Guo 《中国化学》2016,34(12):1268-1276
An innovative molecularly imprinted electrochemical sensor was fabricated based on reduced graphene oxide (RGO) and gold nanocomposite (Au) for rapid detection of vincristine (VCR). The RGO‐Au composite membrane was obtained via direct one‐step electrodeposition technique of graphene oxide (GO) and chloroauric acid (HAuCl4) on the surface of a glassy carbon electrode (GCE) by means of cyclic voltammetry (CV) in the potential range between ?1.5 and 0.6 V in phosphate buffer solution (PBS) of pH 9.18, which is capable of effectively utilizing its superior electrical conductivity, larger specific surface area due to its synergistic effect between RGO and Au. The molecularly imprinted polymers (MIPs) were synthesized on the RGO‐Au modified glassy carbon electrode surface with VCR as the template molecular, methyl acrylic acid (MAA) as the functional monomer, and ethylene glycol maleic rosinate acrylate (EGMRA) as a cross‐linker. The performance of the sensor was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) in detail. Under the optimum conditions, the fabricated sensor exhibited a linear relationship between oxidation peak current and VCR concentration over the range of 5.0×10?8–5.0×10?6 mol·L minus;1 with a correlation coefficient of 0.9952 and a detection limit (S/N=3) of 2.6×10minus;8 mol·Lminus;1. The results indicated that the imprinted polymer films exhibited an excellent selectivity for VCR. The imprinted sensor was successfully used to determine VCR in real samples with recoveries of 90% –120% by using the standard addition method.  相似文献   

15.
4‐Carboxyphenyl groups are covalently grafted onto graphene oxide via diazonium chemistry for studying their role on the adsorption of iron oxide nanoparticles. The nanoparticles are deposited via a novel phase‐transfer approach involving specific interactions at the interface between two immiscible solvents. The increased density and the homogeneous distribution of surface carboxyl moieties enable the preparation of a nanocomposite with improved iron oxide distribution and loading. Structure‐properties relationships are investigated by analysing the electrochemical properties of the nanocomposites, which are regarded as promising active materials for application in supercapacitors. It is demonstrated that the nature of the interactions between the components similarly affects the overall electrochemical performances of the nanocomposites and the structure of the materials.  相似文献   

16.
Graphene oxide–bacterial cellulose (GO/BC) nanocomposite hydrogels with well‐dispersed GO in the network of BC are successfully developed using a facile one‐step in situ biosynthesis by adding GO suspension into the culture medium of BC. During the biosynthesis process, the crystallinity index of BC decreases and GO is partially reduced. The experimental results indicate that GO nanosheets are uniformly dispersed and well‐bound to the BC matrix and that the 3D porous structure of BC is sustained. This is responsible for efficient load transfer between the GO reinforcement and BC matrix. Compared with the pure BC, the tensile strength and Young's modulus of the GO/BC nanocomposite hydrogel containing 0.48 wt% GO are significantly improved by about 38 and 120%, respectively. The GO/BC nanocomposite hydrogels are promising as a new material for tissue engineering scaffolds.

  相似文献   


17.
Single‐layer graphene has received much attention because of its unique two‐dimensional crystal structure and properties. In this review, we focus on the graphene devices in solution, and their properties that are relevant to chemical and biological applications. We will discuss their charge transport, controlled by electrochemical gates, interfacial and quantum capacitance, charged impurities, and surface potential distribution. The sensitive dependence of graphene charge transport on the surrounding environment points to their potential applications as ultrasensitive chemical sensors and biosensors. The interfacial and quantum capacitance studies are directly relevant to the on‐going effort of creating graphene‐based ultracapacitors for energy storage.  相似文献   

18.
Herein, we present an electrochemically assisted method for the reduction of graphene oxide (GO) and the assembly of polyoxometalate clusters on the reduced GO (rGO) nanosheets for the preparation of nanocomposites. In this method, the Keggin‐type H4SiW12O40 (SiW12) is used as an electrocatalyst. During the reduction process, SiW12 transfers the electrons from the electrode to GO, leading to a deep reduction of GO in which the content of oxygen‐containing groups is decreased to around 5 %. Meanwhile, the strong adsorption effect between the SiW12 clusters and rGO nanosheets induces the spontaneous assembly of SiW12 on rGO in a uniformly dispersed state, forming a porous, powder‐type nanocomposite. More importantly, the nanocomposite shows an enhanced capacity of 275 mAh g?1 as a cathode active material for lithium storage, which is 1.7 times that of the pure SiW12. This enhancement is attributed to the synergistic effect of the conductive rGO support and the well‐dispersed state of the SiW12 clusters, which facilitate the electron transfer and lithium‐ion diffusion, respectively. Considering the facile, mild, and environmentally benign features of this method, it is reasonable as a general route for the incorporation of more types of functional polyoxometalates onto graphene matrices; this may allow the creation of nanocomposites for versatile applications, for example, in the fields of catalysis, electronics, and energy storage.  相似文献   

19.
Graphene oxide (GO) nanosheets can be functionalized with reactive pentafluorophenyl ester via esterification of the carboxylic groups. The resulting reactive GO nanosheets provide a versatile platform for grafting of amino‐containing polymers or biomolecules via ester–amine coupling. Coupling of poly[(9,9‐dioctylfluorene)‐alt‐(4‐amino‐phenylcarbazole)] (PFCz‐NH2), amino‐terminated hyperbranched polyglycerol (HPG‐NH2), and lysozyme (Lyz) was illustrated. The Al/GO‐g‐PFCz/ITO sandwich thin‐film device exhibits bistable electrical switching and rewritable memory effects. The GO‐g‐Lyz nanohybrids exhibit high bactericidal efficacy against S. aureus and E. coli, while the GO‐g‐HPG nanohybrids exhibit reduced cytotoxicity toward 3T3 fibroblasts.  相似文献   

20.
The effect of graphene (G) and graphene oxide (GO), used as the nanofiller in polymer nanocomposites (NC), on the structural and dynamic properties of polymer chains, has been studied by means of molecular dynamics (MD) simulations. Two polymers, i.e., poly(propylene) and poly(vinyl alcohol), are employed as matrices to cover a wider range of polymer–filler interactions. The local structural properties, e.g., density profile, average R g, and end‐to‐end distance as well as dynamic properties, e.g., estimated translational and orientational relaxation times, of polymer chains are studied. In addition, the interaction energies are estimated between polymers and nanofillers for different hybrid systems using MD pullout simulations. Strong heterogeneities in polymer structural and dynamic properties have been observed such that chains are more oriented and exhibit slower dynamics in the vicinity of the nanofillers (G and GO) as compared to bulk. It is also found that the orientation of polymer chains at the interface is more influenced by the nanofiller in such a way that the more oriented polymer chains are observed in G‐based NC for both polymers. However, the immobilization of polymer chains at the interface proves to be very much dependent on the polymer–filler interactions.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号