首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A polyzwitterion is synthesized by regioselective functionalization of cellulose possessing a uniform charge distribution. The positively charged ammonium group is present at position 6, while the negative charge of carboxylate is located at positions 2 and 3 of the repeating unit. The molecular structure of the biopolymer derivative is proved by NMR spectroscopy. This cellulose‐based zwitterion is applied to several support materials by spin‐coating and characterized by means of atomic force microscope, contact angle measurements, ellipsometry, and X‐ray photoelectron spectroscopy. The coatings possess antimicrobial activity depending on the support materials (glass, titanium, tissue culture poly(styrene)) as revealed by confocal laser scanning microscopy and live/dead staining.

  相似文献   


2.
Here, postfunctionalization and bioapplication of a π‐conjugated polymer named 4‐[4H‐dithieno(3,2‐b:2′,3′‐d)pyrrol‐4‐yl]aniline (DTP‐aryl‐NH2) are reported, which is successfully synthesized via electropolymerization onto the glassy carbon electrode. Folic acid (FA) is used to modify the amino functional polymer via N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride/N‐hydroxysuccinimide chemistry for the further steps. The selective adhesion of folate receptor positive cells on the surface is followed by the electrochemical methods. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to characterize stepwise modification of the electroactive surface. After optimization studies such as scan rate during the polymer deposition, FA amount for the efficient surface targeting, incubation time with the cells etc., analytical characterization is carried out. The surface morphologies at each step are imaged by using fluorescence microscopy.

  相似文献   


3.
Polyelectrolyte multilayers (PEMs) with different polycation/polyanion pairs are fabricated by the layer‐by‐layer technique employing synthetic, natural, and both types of polyelectrolytes. The impact of the chemical composition of PEMs on cell adhesion is assessed by studying cell shape, spreading area, focal contacts, and cell proliferation for the A549 cell line. Cells exhibit good adhesion on PEMs containing natural polycations and poly(sodium 4‐styrenesulfonate) (PSS) as polyanion, but limited adhesion is observed on PEMs fabricated from both natural polyelectrolytes. PEMs are then assembled, depositing a block of natural polyelectrolytes on top of a stiffer block with PSS as polyanion. Cell adhesion is enhanced on top of the diblock PEMs compared to purely natural PEMs. This fact could be explained by the interdigitation between polyelectrolytes from the two blocks. Diblock PEM assembly provides a simple means to tune cell adhesion on biocompatible PEMs.

  相似文献   


4.
Biosensing is an important and rapidly developing field, with numerous potential applications in health care, food processing, and environmental control. Polymer–graphene nanocomposites aim to leverage the unique, attractive properties of graphene by combining them with those of a polymer matrix. Molecular imprinted polymers, in particular, offer the promise of artificial biorecognition elements. A variety of polymers, including intrinsically conducting polymers (polyaniline, polypyrrole), bio‐based polymers (chitosan, polycatechols), and polycationic polymers (poly(diallyldimethylammonium chloride), polyethyleneimine), have been utilized as matrices for graphene‐based nanofillers, yielding sensitive biosensors for various biomolecules, such as proteins, nucleic acids, and small molecules.

  相似文献   


5.
Polymicrobial biofilm‐associated implant infections present a challenging clinical problem. Through modifications of lyophilized chitosan sponges, degradable drug delivery devices for antibiotic solution have been fabricated for prevention and treatment of contaminated musculoskeletal wounds. Elution of amikacin, vancomycin, or a combination of both follows a burst release pattern with vancomycin released above minimum inhibitory concentration for Staphylococcus aureus for 72 h and amikacin released above inhibitory concentrations for Pseudomonas aeruginosa for 3 h. Delivery of a vancomycin, amikacin, or a combination of both reduces biofilm formation on polytetrafluoroethylene catheters in an in vivo model of contamination. Release of dual antibiotics from sponges is more effective at preventing biofilm formation than single‐loaded chitosan sponges. Treatment of pre‐formed biofilm with high‐dose antibiotic release from chitosan sponges shows minimal reduction after 48 h. These results demonstrate infection‐preventive efficacy for antibiotic‐loaded sponges, as well as the need for modifications in the development of advanced materials to enhance treatment efficacy in removing established biofilm.

  相似文献   


6.
This study reports a series of novel amino acid based dual‐responsive hydrogels. Prepared by a facile one‐pot 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide (EDC) coupling reaction, the solid content, structure, and mechanical behavior of hydrogels could be easily adjusted by changing the concentrations of the polymers and the crosslinkers. With pH‐responsive anionic pseudo‐peptides as backbones and disulfide‐containing l ‐cystine dimethyl ester as crosslinkers, these hydrogels are able to collapse and form relatively compact structure at an acidic pH, while swelled and partly dissociated at a neutral pH. Further addition of dithiothreitol (DTT) facilitated complete degradation of hydrogels. The high loading efficiency, rapid but complete triggered‐release, and good biocompatibility make these hydrogels promising candidates for oral delivery.

  相似文献   


7.
A visible light and pH responsive anticancer drug delivery system based on polymer‐coated mesoporous silica nanoparticles (MSNs) has been developed. Perylene‐functionalized poly(dimethylaminoethyl methacrylates) sensitive to visible light and pH are electrostatically attached on the surface of MSNs to seal the nanopores. Stimulation of visible light and acid can unseal the nanopores to induce controlled drug release from the MSNs. More interestingly, the release can be enhanced under the combined stimulation of the dual‐stimuli. The synergistic effect of visible light and acid stimulation on the efficient release of anticancer drugs from the nanohybrids endows the system with great potential for cancer therapy.

  相似文献   


8.
Thin polymer films that prevent the adhesion of bacteria are of interest as coatings for the development of infection‐resistant biomaterials. This study investigates the influence of grafting density and film thickness on the adhesion of Staphylococcus epidermidis to poly(poly(ethylene glycol)methacrylate) (PPEGMA) and poly(2‐hydroxyethyl methacrylate) (PHEMA) brushes prepared via surface‐initiated atom transfer radical polymerization (SI‐ATRP). These brushes are compared with poly(ethylene glycol) (PEG) brushes, which are obtained by grafting PEG onto an epoxide‐modified substrate. Except for very low grafting densities (ρ = 1%), crystal violet staining experiments show that the PHEMA and PPEGMA brushes are equally effective as the PEG‐modified surfaces in preventing S. epidermis adhesion and do not reveal any significant variations as a function of film thickness or grafting density. These results indicate that brushes generated by SI‐ATRP are an attractive alternative to grafted‐onto PEG films for the preparation of surface coatings that resist bacterial adhesion.

  相似文献   


9.
A collagen sheet with highly aligned collagen fibers is fabricated by continuous cyclic stretch. The rearrangement of the collagen fibers depends on the different process parameters of the cyclic stretch, including magnitude, frequency, and period of stretch. The collagen fibers are aligned perpendicularly to the direction of the stretch. Corneal stromal cells and smooth muscle cells cultivated on the highly aligned collagen sheet show alignment along the collagen fibers without the stretch during culture. Thus, the sheet can be a suitable scaffold for use in regenerative medicine.

  相似文献   


10.
Targeting nanoparticles for drug delivery has great potential for improving efficacy and reducing side effects from systemic toxicity. New developments in the assembly of materials afford the opportunity to expose cryptic targeting domains in tissue‐specific microenvironments in which certain proteases are expressed. Here, recombinant proteins are designed to combine the responsiveness to environmental proteases with specific targeting. Materials made recombinantly allow complete control over amino acid sequence, in which each molecule is identically functionalized. Previously, oleosin, a naturally occurring plant protein that acts as a surfactant, has been engineered to self‐assemble into spherical micelles—a useful structure for drug delivery. To make oleosins that are locally activated to bind receptors, oleosin is genetically modified to incorporate the integrin‐binding motif RGDS just behind a domain cleavable by thrombin. The resulting modified oleosin self‐assembles into spherical micelles in aqueous environments, with the RGDS motif protected by the thrombin‐cleavable domain. Upon the addition of thrombin, the RGDS is exposed and the binding of the spherical micelles to breast cancer cells is increased fourfold.

  相似文献   


11.
Polyelectrolyte block copolymer micelles assembled thin film is switched in response to local photocatalytic reactions on titanium dioxide, resulting in a layer of variable height, stiffness in response to visible light irradiation. Preosteoblasts migrate toward stiffer side of the substrates.

  相似文献   


12.
Molecularly Imprinted Polymers (MIPs) are highly advantageous in the field of analytical chemistry. However, interference from secondary molecules can also impede capture of a target by a MIP receptor. This greatly complicates the design process and often requires extensive laboratory screening which is time consuming, costly, and creates substantial waste products. Herein, is presented a new technique for screening of “virtually imprinted receptors” for rebinding of the molecular template as well as secondary structures, correlating the virtual predictions with experimentally acquired data in three case studies. This novel technique is particularly applicable to the evaluation and prediction of MIP receptor specificity and efficiency in complex aqueous systems.

  相似文献   


13.
Pinosylvin is a natural stilbenoid known to exhibit antibacterial bioactivity against foodborne bacteria. In this work, pinosylvin is chemically incorporated into a poly(anhydride‐ester) (PAE) backbone via melt‐condensation polymerization, and characterized with respect to its physicochemical and thermal properties. In vitro release studies demonstrate that pinosylvin‐based PAEs hydrolytically degrade over 40 d to release pinosylvin. Pseudo‐first order kinetic experiments on model compounds, butyric anhydride and 3‐butylstilbene ester, indicate that the anhydride linkages hydrolyze first, followed by the ester bonds to ultimately release pinosylvin. An antibacterial assay shows that the released pinosylvin exhibit bioactivity, while in vitro cytocompatibility studies demonstrate that the polymer is noncytotoxic toward fibroblasts. These preliminary findings suggest that the pinosylvin‐based PAEs can serve as food preservatives in food packaging materials by safely providing antibacterial bioactivity over extended time periods.

  相似文献   


14.
Chondrocyte‐seeded, photo‐cross‐linked hydrogels prepared from solutions containing 50% mass fractions of methacrylated glycol chitosan or methacrylated hyaluronic acid (MHA) with methacrylated chondroitin sulfate (MCS) are cultured in vitro under static conditions over 35 d to assess their suitability for load‐bearing soft tissue repair. The photo‐cross‐linked hydrogels have initial equilibrium moduli between 100 and 300 kPa, but only the MHAMCS hydrogels retain an approximately constant modulus (264 ± 5 kPa) throughout the culture period. Visually, the seeded chondrocytes in the MHAMCS hydrogels are well distributed with an apparent constant viability in culture. Multicellular aggregates are surrounded by cartilaginous matrix, which contain aggrecan and collagen II. Thus, co‐cross‐linked MCS and MHA hydrogels may be suited for use in an articular cartilage or nucleus pulposus repair applications.

  相似文献   


15.
Reactive oxygen species (ROS) play important roles in cell signaling pathways, while increased production of ROS may disrupt cellular homeostasis, giving rise to oxidative stress and a series of diseases. Utilizing these cell‐generated species as triggers for selective tuning polymer structures and properties represents a promising methodology for disease diagnosis and treatment. Recently, significant progress has been made in fabricating biomaterials including nanoparticles and macroscopic networks to interact with this dynamic physiological condition. These ROS‐responsive platforms have shown potential in a range of biomedical applications, such as cancer targeted drug delivery systems, cell therapy platforms for inflammation related disease, and so on.

  相似文献   


16.
Electrospun poly‐l ‐lactic acid (PLLA) nanofiber mats carrying surface amine groups, previously introduced by nitrogen atmospheric pressure nonequilibrium plasma, are embedded into aqueous solutions of oligomeric acrylamide‐end capped AGMA1, a biocompatible polyamidoamine with arg‐gly‐asp (RGD)‐reminiscent repeating units. The resultant mixture is finally cured giving PLLA‐AGMA1 hydrogel composites that absorb large amounts of water and, in the swollen state, are translucent, soft, and pliable, yet as strong as the parent PLLA mat. They do not split apart from each other when swollen in water and remain highly flexible and resistant, since the hydrogel portion is covalently grafted onto the PLLA nanofibers via the addition reaction of the surface amine groups to a part of the terminal acrylic double bonds of AGMA1 oligomers. Preliminary tested as scaffolds, the composites prove capable of maintaining short‐term undifferentiated cultures of human pluripotent stem cells in feeder‐free conditions.

  相似文献   


17.
The repair of large crushed or sectioned segments of peripheral nerves remains a challenge in regenerative medicine due to the complexity of the biological environment and the lack of proper biomaterials and architecture to foster reconstruction. Traditionally such reconstruction is only achieved by using fresh human tissue as a surrogate for the absence of the nerve. However, recent focus in the field has been on new polymer structures and specific biofunctionalization to achieve the goal of peripheral nerve regeneration by developing artificial nerve prostheses. This review presents various tested approaches as well their effectiveness for nerve regrowth and functional recovery.

  相似文献   


18.
A series of novel pH‐sensitive gene delivery vectors (POEI 1, 2, and 3) are synthesized through Michael addition from low molecular weight PEI (LMW PEI) via acid‐labile ortho ester linkage with terminal acrylates (OEAc) by various feed molar ratios. The obtained POEI 1 and POEI 2 can efficiently condense plasmid DNA into nanoparticles with size range of 200–300 nm and zeta‐potentials of about +15 mV while protecting DNA from enzymatic digestion compared with POEI 3. Significantly, ortho ester groups of POEI main‐chains can make an instantaneous degradation‐response to acidic endosomal pH (≈5.0), resulting in accelerated disruption of polyplexes and intracellular DNA release. MTT assay reveals that all POEIs exhibit much lower cytotoxicity in different cells than branched PEI (25 KDa). As expected, POEI 1 and POEI 2 perform improved gene transfection in vitro, suggesting that such polycations might be promising gene vectors based on overcoming toxicity‐efficiency contradiction.

  相似文献   


19.
The aim of this study is to establish the safe and effective ocular delivery system of therapeutic small interfering RNA (siRNA) in corneal neovascularization therapy. The major hurdle present in siRNA‐based corneal neovascularization (CNV) therapy is severe cytotoxicity caused by repetitive drug treatment. A reducible branched polyethylenimine (rBPEI)‐based nanoparticle (NP) system is utilized as a new siRNA carrier as a hope for CNV therapy. The thiolated BPEI is readily self‐crosslinked in mild conditions to make high molecular weight rBPEI thus allowing the creation of stable siRNA/rBPEI nanoparticles (siRNA‐rBPEI‐NPs). In the therapeutic region, the rBPEI polymeric matrix is effectively degraded into nontoxic LMW BPEI inside the reductive cytosol causing the rapid release of the encapsulated siRNA into the cytosol to carry out its function. The fluorescent‐labeled siRNA‐rBPEI‐NPs can release siRNA into the entire corneal region after subconjuctival injection into the eye of Sprague Dawley rats thus confirming the proof of concept of this system.

  相似文献   


20.
Furoxans, or 1,2,5‐oxadiazole‐N‐oxides, are a class of nitric oxide (NO)‐donating compounds that release NO in response to thiol‐containing molecules. In this study, polymeric micelles bearing furoxan moieties are prepared from an amphiphilic block copolymer consisting of a hydrophobic furoxan‐bearing block and a hydrophilic poly(N‐acryloylmorpholine) block. The block copolymer is prepared using a combination of the reversible addition–fragmentation chain transfer polymerization and the copper‐catalyzed Huisgen cycloaddition techniques. The block copolymers form spherical micelles with a diameter of 50 nm by self‐assembly in water. The micelles release NO in response to cysteine and show improved stability against hydrolytic decomposition. Furthermore, the micelles show a synergistic anti‐proliferative effect with ibuprofen in human colon cancer cells.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号