首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of the correlation between surface reactivity and quantum-size effects, observed in recent experiments on the oxidation of ultrathin magnesium films, is addressed by means of ab initio calculations and model predictions. We show that the decay length in vacuum of the electronic local density of states at the Fermi energy exhibits systematic oscillations with film thickness, with local maxima induced when a quantum-well state at crosses the Fermi energy. The predicted changes in the decay length are expected to have a major impact on the electron transfer rate by tunneling, which has been proposed to control the initial sticking of in the oxidation process.  相似文献   

2.
The electron states of a vacancy at the Si(111) surface are calculated by means of a tight-binding scheme. The results for a vacancy at the surface layer show one state of Al symmetry below the surface dangling bond band, and another doubly degenerate state of E symmetry above it. The Fermi energy at an isolated vacancy remains fixed by the surface. This allows to derive two important consequences: i) The vacancy state is a neutral one as can be shown by integrating the local density of states up to the Fermi energy. ii) The electronic charge around the vacancy has got the whole surface point symmetry and therefore a Jahn-Teller effect is not induced.  相似文献   

3.
We investigate here the Cooper pairing of fermionic atoms with mismatched Fermi surfaces using a variational construct for the ground state. We determine the state for different values of the mismatch of chemical potential for weak as well as strong coupling regimes including the BCS BEC cross over region. We consider Cooper pairing with both zero and finite net momentum. Within the variational approximation for the ground state and comparing the thermodynamic potentials, we show that (i) the LOFF phase is stable in the weak coupling regime; (ii) the LOFF window is maximum on the BEC side near the Feshbach resonance; and (iii) the existence of stable gapless states with a single Fermi surface for negative average chemical potential on the BEC side of the Feshbach resonance.  相似文献   

4.
We have studied electronic structure of Fe-deposited Au(111) by performing ab initio density functional theory calculations. We find that the magnetic moment on the deposited Fe layer is enhanced as compared to that in bulk iron. We observe a large number of new states on the Fe-deposited surface — one of which is in the majority spin channel having similar dispersion to that on the clean surface, and others in the minority spin channel. The effective mass of electrons in surface states near the Fermi level increases on Fe deposition. The electronic properties are found to be insensitive to the stacking of near-surface layers. We need to use very thick slabs in our calculations to avoid splitting of surface states due to spurious interactions between the two surfaces of the slab. Using the local density of states profiles for different surface states, we conclude that in scanning tunneling microscope experiments one can detect two of the surface states — one in the majority channel below the Fermi level, and another in the minority channel appearing just above the Fermi energy. We compare our results to those from scanning tunneling spectroscopy experiments.  相似文献   

5.
The lateral confinement of the surface state electrons of Cu(111) has been studied by Scanning Tunnelling Microscopy and Spectroscopy at low temperature. The confining nanostructures are Cu(111) islands embedded in a semiconducting Cu3N(111) film which completely isolate them from each other. The standing wave pattern observed reflect the shape of the edge of the islands, i.e. the positions of the confining potential as long as the islands are larger than twice the Fermi wavelength of the surface electrons. The interference pattern in smaller islands is more complex, reflecting the collective behavior of the electrons. When the width of the islands is, at least in one dimension, smaller than the Fermi wavelength, there is a clear shift in the energy of the bottom of the surface band towards the Fermi level. The depopulation of the surface state produced by lateral confinement might have important consequences with respect to the reactivity of these nanostructures.Received: 15 December 2003, Published online: 10 August 2004PACS: 68.37.Ef Scanning tunneling microscopy (including chemistry induced with STM) - 73.20.At Surface states, band structure, electron density of states - 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals  相似文献   

6.
刘福  周继承  谭晓超 《物理学报》2009,58(11):7821-7825
采用广义梯度近似的密度泛函理论方法计算了3C-SiC(001)-(2×1)表面的原子及电子结构.计算结果表明,3C-SiC(001)-(2×1)表面为非对称性的Si二聚体模型,其二聚体的Si原子间键长为0.232 nm.电子结构的计算结果表明,在费米能级处有明显的态密度,因此3C-SiC(001)-(2×1)表面呈金属性.在带隙附近存在四个表面态带,一个位于费米能级附近,一个位于费米能级以上5 eV处,另外两个位于费米能级以下的价带中. 关键词: 碳化硅 密度泛函理论计算 原子结构 电子结构  相似文献   

7.
The possibility of interpreting the normal pseudogap state of cuprates as a result of the formation of spin and charge structures is investigated for solutions of the Hubbard model of a finite 2D cluster based on the mean field method. The iterative self-consistency procedure reduces the initial uncorrelated spin distributions to stable structures. The Fourier components of the charge and spin distributions in such structures have peaks for characteristic incommensurate quasi-momenta depending on the doping. It is shown that for any doping, the density of states of the system has a sharp minimum (pseudogap) at the Fermi level. This emergence of the gap just at the Fermi level is a property typical of not only the superconducting state, but also the normal state of spin glasses. The characteristics of the Fermi surface averaged over the implemented structures and the properties of quasiparticles in the nodal and antinodal regions of the quasi-momentum are considered.  相似文献   

8.
Yue-Bo Liu 《中国物理 B》2021,30(11):117302-117302
We report an abnormal phenomenon that the source-drain current (ID) of AlGaN/GaN heterostructure devices decreases under visible light irradiation. When the incident light wavelength is 390 nm, the photon energy is less than the band gaps of GaN and AlGaN whereas it can causes an increase of ID. Based on the UV light irradiation, a decrease of ID can still be observed when turning on the visible light. We speculate that this abnormal phenomenon is related to the surface barrier height, the unionized donor-like surface states below the surface Fermi level and the ionized donor-like surface states above the surface Fermi level. For visible light, its photon energy is less than the surface barrier height of the AlGaN layer. The electrons bound in the donor-like surface states below the Fermi level are excited and trapped by the ionized donor-like surface states between the Fermi level and the conduction band of AlGaN. The electrons trapped in ionized donor-like surface states show a long relaxation time, and the newly ionized donor-like surface states below the surface Fermi level are filled with electrons from the two-dimensional electron gas (2DEG) channel at AlGaN/GaN interface, which causes the decrease of ID. For the UV light, when its photon energy is larger than the surface barrier height of the AlGaN layer, electrons in the donor-like surface states below the Fermi level are excited to the conduction band and then drift into the 2DEG channel quickly, which cause the increase of ID.  相似文献   

9.
We investigate the low-energy electronic structure of a Weyl semimetal quantum dot(QD) with a simple model Hamiltonian with only two Weyl points. Distinguished from the semiconductor and topological insulator QDs, there exist both surface and bulk states near the Fermi level in Weyl semimetal QDs. The surface state, distributed near the side surface of the QD, contributes a circular persistent current, an orbital magnetic moment, and a chiral spin polarization with spin-current locking. There are always surface states even for a strong magnetic field, even though a given surface state gradually evolves into a Landau level with increasing magnetic field. It indicates that these unique properties can be tuned via the QD size. In addition, we show the correspondence to the electronic structures of a three-dimensional Weyl semimetal, such as Weyl point and Fermi arc. Because a QD has the largest surface-to-volume ratio, it provides a new platform to verify Weyl semimetal by separating and detecting the signals of surface states. Besides, the study of Weyl QDs is also necessary for potential applications in nanoelectronics.  相似文献   

10.
11.
The effect of electron quantum confinement on the surface reactivity of ultrathin metal films is explored by comparing the initial oxidation rate of atomically flat magnesium films of different thickness, using complementary microscopy techniques. Pronounced thickness-dependent variations in the oxidation rate are observed for well ordered films of up to 15 atomic layers. Quantitative comparison reveals direct correlation between the surface reactivity and the periodic changes in the density of electronic states induced by quantum-well states crossing the Fermi level.  相似文献   

12.
《Surface science》1992,260(1-3):323-328
We present a theoretical investigation of the surface electronic structure for the (100) surface of centered tetragonal copper. The calculated band structure and k- and layer-resolved densities of states for the surface and bulk are compared with corresponding quantities obtained for the face centered cubic (fcc) structure. We have found a surface state at about 5 eV below the Fermi level which is splitted off the bulk s-d band for both the tetragonal and the fcc structure. Furthermore, we have calculated the normal photoemission spectra within the one-step approach. The direct transition model explains all features of available experimental data. Particularly, we can conclude that the invisibility of the surface state for the fcc structure in most of the photoemission experiments is driven by the final states.  相似文献   

13.
We propose a general method for optical control of magnetic Feshbach resonances in ultracold atomic gases with more than one molecular state in an energetically closed channel. Using two optical frequencies to couple two states in the closed channel, inelastic loss arising from spontaneous emission is greatly suppressed by destructive quantum interference at the two-photon resonance, i.e., dark-state formation, while the scattering length is widely tunable by varying the frequencies and/or intensities of the optical fields. This technique is of particular interest for a two-component atomic Fermi gas, which is stable near a Feshbach resonance.  相似文献   

14.
《Surface science》1994,314(3):L925-L930
The register line formalism of angle-resolved photoemission is applied to the special case where electrons are excited from sp surface states. By considering lifetime broadening alone, it is demonstrated that it is possible to explain why photoemission linewidths increase as the initial states disperse towards the Fermi level. Favourable comparisons are made between the theory and with measurements of the surface state widths on Cu(111) and Al(001).  相似文献   

15.
Results of self-consistent band calculations are reported for the C15 structured XAl2 materials (X = Y, La, and Ce) using the local spin density functional formalism for assumed ferromagnetic and antiferromagnetic states as well as the paramagnetic state. The X-atoms are found to be the dominant factor is determining the electronic structure near the Fermi energy and this is enhanced by the presence of f-bands close to (LaAl2) or at (CeAl2) the Fermi energy. In paramagnetic CeAl2, the f-bands are about 1 eV wide and, although principally above the Fermi energy, extend down to accomodate the additional electron compared to LaAl2. The ferromagnetic state is found not to be stable. By contrast, the antiferromagnetic state is found to be stable with a magnetic moment of 0.88μB per Ce atom in very good agreement with the maximum moment, 0.89μB found in the neutron measurements of Barbara et al. A significant narrowing of the f-bandwidth is observed in the antiferromagnetic state. The antiferromagnetic spin density ordering appears to be related to nesting features in this underlying Fermi surface in LaAl2 (i.e., no 4f electron) rather than that of CeAl2.  相似文献   

16.
The stable geometric and electronic structures of the fully and half sulfur-edge-functionalized ZGNRs at their widths of four zigzag carbon chains (S-4-ZGNRs) have been studied by using the ab initio density-functional method. It is found from our calculations that (1) under the periodic boundary condition, the two-dimensional plane structures are the most stable ground states in all the possible isomers of the S-4-ZGNRs at both 100% and 50% terminations, which are all metallic. (2) A much delocalized characteristic S-px lone-pair electron's band crossing its Fermi level appears in the case of fully S-edge-termination, which is more extended in a large energy range of over 8.0 eV, in contrast to the corresponding oxygen-px (O-px) band of the O-4-ZGNR, covering only a small energy range of 3.2 eV. In the case of half S-edge-termination, however, the S-px band is found to be much more localized, which forms two almost flat bands at about+3.0 eV above its Fermi level. (3) More interestingly, at 50% S-edge-termination, a flat portion of the π-electron edge states is found to lie a little bit below its Fermi level, making its unpolarized ground state unstable. And thus the spin-polarized antiferromagnetic (AFM) state is found to be the real ground state of the half S-4-ZGNR, which is a semiconductor with an indirect energy gap of about 0.16 eV. In the AFM ground state, there exists magnetic moments of about 0.2μB on each edge carbon atom, which is FM coupling along the same edge, but AFM coupling between its two edges.  相似文献   

17.
Electron accumulation states in InN have been measured using high resolution angle-resolved photoemission spectroscopy (ARPES). The electrons in the accumulation layer have been discovered to reside in quantum well states. ARPES was also used to measure the Fermi surface of these quantum well states, as well as their constant binding energy contours below the Fermi level E(F). The energy of the Fermi level and the size of the Fermi surface for these quantum well states could be controlled by varying the method of surface preparation. This is the first unambiguous observation that electrons in the InN accumulation layer are quantized and the first time the Fermi surface associated with such states has been measured.  相似文献   

18.
The existence of one-dimensional (1D) electronic states between self-organized Pt nanowires spaced 1.6 or 2.4 nm apart on a Ge(001) surface is revealed by low-temperature scanning tunneling microscopy. These perfectly straight Pt nanowires act as barriers for a surface state (located just below the Fermi level) of the underlying terrace. The energy positions of the 1D electronic states are in good agreement with the energy levels of a quantum particle in a well. Spatial maps of the differential conductivity of the 1D electronic states conclusively reveal that these states are exclusively present in the troughs between the Pt nanowires.  相似文献   

19.
The electronic structure of the d band of both flat and stepped Pt surfaces is investigated within the tight-binding approximation, using a moment method. A sharp surface virtual bound state peak is found in the local density of states at the protruding edge of the stepped surfaces and the symmetry of states near the Fermi level are found to be rather dependent on the geometry of the surface. Possible connections with experiments are briefly discussed.  相似文献   

20.
The spin and charge structures formed in a Hubbard model for a finite two-dimensional cluster have been studied in the mean field approximation. The self-consistent iterative procedure reduces an uncorrelated initial spin distribution into stable structures with characteristic spectral properties. It has been shown that the density of states of the system for any doping has a sharp minimum at the Fermi level, the pseudogap. This means that the pinning of the gap at the Fermi level is not an exclusive property of a superconducting state, but is also typical of a normal state of spin glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号