首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In this paper we study the numerical solution of an initial value problem of a sub-diffusion type. For the time discretization we apply the discontinuous Galerkin method and we use continuous piecewise finite elements for the space discretization. Optimal order convergence rates of our numerical solution have been shown. We compare our theoretical error bounds with the results of numerical computations. We also present some numerical results showing the super-convergence rates of the proposed method.  相似文献   

2.
In this paper we present a numerical method for a generalized Black-Scholes equation, which is used for option pricing. The method is based on a central difference spatial discretization on a piecewise uniform mesh and an implicit time stepping technique. Our scheme is stable for arbitrary volatility and arbitrary interest rate, and is second-order convergent with respect to the spatial variable. Furthermore, the present paper efficiently treats the singularities of the non-smooth payoff function. Numerical results support the theoretical results.  相似文献   

3.
4.
In this paper, we consider a two-factor interest rate model with stochastic volatility, and we assume that the instantaneous interest rate follows a jump-diffusion process. In this kind of problems, a two-dimensional partial integro-differential equation is derived for the values of zero-coupon bonds. To apply standard numerical methods to this equation, it is customary to consider a bounded domain and incorporate suitable boundary conditions. However, for these two-dimensional interest rate models, there are not well-known boundary conditions, in general. Here, in order to approximate bond prices, we propose new boundary conditions, which maintain the discount function property of the zero-coupon bond price. Then, we illustrate the numerical approximation of the corresponding boundary value problem by means of an alternative direction implicit method, which has been already applied for pricing options. We test these boundary conditions with several interest rate pricing models.  相似文献   

5.
众所周知,Vasicek短期利率模型,由于可取负的利率,使得利率衍生物定价计算具有不稳定现象,并引起业界对它的定价的可信度产生怀疑.该文指出只需以息票作为新的计价单位(Benchmark),利率衍生物定价计算不稳定现象就可避免,为了说明定价的可行性,将在随机利率条件下以欧式看涨期权为例,通过数值方法对Vasicek和CIR这两类利率模型衍生物定价的误差进行分析.  相似文献   

6.
In this paper we present a stable numerical method for the linear complementary problem arising from American put option pricing. The numerical method is based on a hybrid finite difference spatial discretization on a piecewise uniform mesh and an implicit time stepping technique. The scheme is stable for arbitrary volatility and arbitrary interest rate. We apply some tricks to derive the error estimates for the direct application of finite difference method to the linear complementary problem. We use the Singularity-Separating method to remove the singularity of the non-smooth payoff function. It is proved that the scheme is second-order convergent with respect to the spatial variable. Numerical results support the theoretical results.  相似文献   

7.
We consider a parabolic sine-Gordon model with periodic boundary conditions. We prove a fundamental maximum principle which gives a priori uniform control of the solution. In the one-dimensional case we classify all bounded steady states and exhibit some explicit solutions. For the numerical discretization we employ first order IMEX, and second order BDF2 discretization without any additional stabilization term. We rigorously prove the energy stability of the numerical schemes under nearly sharp and quite mild time step constraints. We demonstrate the striking similarity of the parabolic sine-Gordon model with the standard Allen-Cahn equations with double well potentials.  相似文献   

8.
This paper develops an efficient direct integration method for pricing of the variable annuity (VA) with guarantees in the case of stochastic interest rate. In particular, we focus on pricing VA with Guaranteed Minimum Withdrawal Benefit (GMWB) that promises to return the entire initial investment through withdrawals and the remaining account balance at maturity. Under the optimal (dynamic) withdrawal strategy of a policyholder, GMWB pricing becomes an optimal stochastic control problem that can be solved using backward recursion Bellman equation. Optimal decision becomes a function of not only the underlying asset but also interest rate. Presently our method is applied to the Vasicek interest rate model, but it is applicable to any model when transition density of the underlying asset and interest rate is known in closed-form or can be evaluated efficiently. Using bond price as a numéraire the required expectations in the backward recursion are reduced to two-dimensional integrals calculated through a high order Gauss–Hermite quadrature applied on a two-dimensional cubic spline interpolation. The quadrature is applied after a rotational transformation to the variables corresponding to the principal axes of the bivariate transition density, which empirically was observed to be more accurate than the use of Cholesky transformation. Numerical comparison demonstrates that the new algorithm is significantly faster than the partial differential equation or Monte Carlo methods. For pricing of GMWB with dynamic withdrawal strategy, we found that for positive correlation between the underlying asset and interest rate, the GMWB price under the stochastic interest rate is significantly higher compared to the case of deterministic interest rate, while for negative correlation the difference is less but still significant. In the case of GMWB with predefined (static) withdrawal strategy, for negative correlation, the difference in prices between stochastic and deterministic interest rate cases is not material while for positive correlation the difference is still significant. The algorithm can be easily adapted to solve similar stochastic control problems with two stochastic variables possibly affected by control. Application to numerical pricing of Asian, barrier and other financial derivatives with a single risky asset under stochastic interest rate is also straightforward.  相似文献   

9.
甘小艇 《计算数学》2021,43(3):337-353
本文主要研究状态转换下欧式Merton跳扩散期权定价模型的拟合有限体积方法.针对该定价模型中的偏积分-微分方程,空间方向采用拟合有限体积方法离散,时间方向构造Crank-Nicolson格式.理论证明了数值格式的一致性、稳定性和单调性,因此收敛至原连续问题的解.数值实验验证了新方法的稳健性,有效性和收敛性.  相似文献   

10.
In this paper we present an analysis of a numerical method for a degenerate partial differential equation, called the Black–Scholes equation, governing American and European option pricing. The method is based on a fitted finite volume spatial discretization and an implicit time stepping technique. The analysis is performed within the framework of the vertical method of lines, where the spatial discretization is formulated as a Petrov–Galerkin finite element method with each basis function of the trial space being determined by a set of two-point boundary value problems. We establish the stability and an error bound for the solutions of the fully discretized system. Numerical results are presented to validate the theoretical results.  相似文献   

11.
We study indifference pricing of mortality contingent claims in a fully stochastic model. We assume both stochastic interest rates and stochastic hazard rates governing the population mortality. In this setting we compute the indifference price charged by an insurer that uses exponential utility and sells k contingent claims to k independent but homogeneous individuals. Throughout we focus on the examples of pure endowments and temporary life annuities. We begin with a continuous-time model where we derive the linear pdes satisfied by the indifference prices and carry out extensive comparative statics. In particular, we show that the price-per-risk grows as more contracts are sold. We then also provide a more flexible discrete-time analog that permits general hazard rate dynamics. In the latter case we construct a simulation-based algorithm for pricing general mortality-contingent claims and illustrate with a numerical example.  相似文献   

12.
Compared to the classical Black-Scholes model for pricing options, the Finite Moment Log Stable (FMLS) model can more accurately capture the dynamics of the stock prices including large movements or jumps over small time steps. In this paper, the FMLS model is written as a fractional partial differential equation and we will present a new numerical scheme for solving this model. We construct an implicit numerical scheme with second order accuracy for the FMLS and consider the stability and convergence of the scheme. In order to reduce the storage space and computational cost, we use a fast bi-conjugate gradient stabilized method (FBi-CGSTAB) to solve the discrete scheme. A numerical example is presented to show the efficiency of the numerical method and to demonstrate the order of convergence of the implicit numerical scheme. Finally, as an application, we use the above numerical technique to price a European call option. Furthermore, by comparing the FMLS model with the classical B-S model, the characteristics of the FMLS model are also analyzed.  相似文献   

13.
We consider the pricing of long-dated insurance contracts under stochastic interest rates and stochastic volatility. In particular, we focus on the valuation of insurance options with long-term equity or foreign exchange exposures. Our modeling framework extends the stochastic volatility model of Schöbel and Zhu (1999) by including stochastic interest rates. Moreover, we allow all driving model factors to be instantaneously correlated with each other, i.e. we allow for a general correlation structure between the instantaneous interest rates, the volatilities and the underlying stock returns. As insurance products often incorporate long-term exposures, they are typically more sensitive to changes in the interest rates, volatility and currencies. Therefore, having the flexibility to correlate the underlying asset price with both the stochastic volatility and the stochastic interest rates, yields a realistic model which is of practical importance for the pricing and hedging of such long-term contracts. We show that European options, typically used for the calibration of the model to market prices, and forward starting options can be priced efficiently and in closed-form by means of Fourier inversion techniques. We extensively discuss the numerical implementation of these pricing formulas, allowing for a fast and accurate valuation of European and forward starting options. The model will be especially useful for the pricing and risk management of insurance contracts and other exotic derivatives involving long-term maturities.  相似文献   

14.
We consider the pricing of long-dated insurance contracts under stochastic interest rates and stochastic volatility. In particular, we focus on the valuation of insurance options with long-term equity or foreign exchange exposures. Our modeling framework extends the stochastic volatility model of Schöbel and Zhu (1999) by including stochastic interest rates. Moreover, we allow all driving model factors to be instantaneously correlated with each other, i.e. we allow for a general correlation structure between the instantaneous interest rates, the volatilities and the underlying stock returns. As insurance products often incorporate long-term exposures, they are typically more sensitive to changes in the interest rates, volatility and currencies. Therefore, having the flexibility to correlate the underlying asset price with both the stochastic volatility and the stochastic interest rates, yields a realistic model which is of practical importance for the pricing and hedging of such long-term contracts. We show that European options, typically used for the calibration of the model to market prices, and forward starting options can be priced efficiently and in closed-form by means of Fourier inversion techniques. We extensively discuss the numerical implementation of these pricing formulas, allowing for a fast and accurate valuation of European and forward starting options. The model will be especially useful for the pricing and risk management of insurance contracts and other exotic derivatives involving long-term maturities.  相似文献   

15.
国内外利率为随机的双币种重置型期权定价   总被引:1,自引:0,他引:1  
黄国安  邓国和 《大学数学》2011,27(2):125-132
双币种重置期权的特征是指在终端期T时的收益依赖于预先设定的t<,0>时刻标的资产的价格与执行价K>0(事先给定)的大小关系重新设置期权的执行价从而给出其定价,这种期权是投资于外国资产的一种合约,其风险不仅依赖外国资产价格的变化,还受外国货币的汇率以及国内外两种利率波动的影响,所以在实际应用方面十分广泛.本文首先就标的资...  相似文献   

16.
假设利率变化的模型是由随机微分方程给出,则可以用推导Black-Scholes方程的方法来推出债券价格满足的偏微分方程,得到一个抛物型的偏微分方程.但是,在债券定价的方程中隐含有一个参数λ称为利率风险的市场价格.所谓债券定价的反问题,就是由不同到期时间的债券的现在价格来得到利率风险的市场价格.对随机利率模型下债券定价的正问题先给予介绍和差分数值求解方法,并介绍了反问题,且对反问题给出了数值方法.  相似文献   

17.
18.
In this paper we establish the error rate of first order asymptotic approximation for the tail probability of sums of log-elliptical risks. Our approach is motivated by extreme value theory which allows us to impose only some weak asymptotic conditions satisfied in particular by log-normal risks. Given the wide range of applications of the log-normal model in finance and insurance our result is of interest for both rare-event simulations and numerical calculations. We present numerical examples which illustrate that the second order approximation derived in this paper significantly improves over the first order approximation.  相似文献   

19.
In this paper we compare different multifactor HJM models with humped volatility structures, to each other and to models with strictly decreasing volatility. All the models are estimated on Euribor and swap rates panel data maximizing the quasi-likelihood function obtained from the Kalman filter. We develop the analysis in two steps: first we study the in-sample properties of the estimated models, then we test the pricing performance on caps. We find the humped volatility specification to greatly improve the model estimation and to provide sufficiently accurate cap prices, although the models has been calibrated on interest rates data and not on cap prices. Moreover, we find the two-factor humped volatility model to outperform the three-factor models in pricing caps.  相似文献   

20.
The focus of this work is on numerical solutions to two-factor option pricing partial differential equations with variable interest rates. Two interest rate models, the Vasicek model and the Cox–Ingersoll–Ross model (CIR), are considered. Emphasis is placed on the definition and implementation of boundary conditions for different portfolio models, and on appropriate truncation of the computational domain. An exact solution to the Vasicek model and an exact solution for the price of bonds convertible to stock at expiration under a stochastic interest rate are derived. The exact solutions are used to evaluate the accuracy of the numerical simulation schemes. For the numerical simulations the pricing solution is analyzed as the market completeness decreases from the ideal complete level to one with higher volatility of the interest rate and a slower mean-reverting environment. Simulations indicate that the CIR model yields more reasonable results than the Vasicek model in a less complete market.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号