首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we use two direct algebraic methods to solve a fourth-order dispersive cubic-quintic nonlinear Schrödinger equation, which is used to describe the propagation of optical pulse in a medium exhibiting a parabolic nonlinearity law. By using complex envelope ansatz method, we first obtain a new dark soliton and bright soliton, which may approach nonzero when the time variable approaches infinity. Then a series of analytical exact solutions are constructed by means of F-expansion method. These solutions include solitary wave solutions of the bell shape, solitary wave solutions of the kink shape, and periodic wave solutions of Jacobian elliptic function.  相似文献   

2.
According to Ma-Fuchsseiter’s idea, a trial equation method was proposed to find the exact envelop traveling wave solutions to some nonlinear differential equations with variable coefficients. As an application, combining with the complete discrimination system for polynomial, some exact envelop traveling wave solutions to Schrödinger equation with variable coefficients were obtained. At the same time, the physical meanings of the obtained solutions are discussed, and the problem needed to further study is pointed out.  相似文献   

3.
The extended homogeneous balance method is used to construct exact traveling wave solutions of a generalized Hirota–Satsuma coupled KdV equation, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation, respectively. Many exact traveling wave solutions of a generalized Hirota–Satsuma coupled KdV equation are successfully obtained, which contain soliton-like and periodic-like solutions This method is straightforward and concise, and it can also be applied to other nonlinear evolution equations.  相似文献   

4.
5.
We make use of the homogeneous balance method and symbolic computation to construct new exact traveling wave solutions for the Benjamin-Bona-Mahoney (BBM) equation. Many new exact traveling wave solutions are successfully obtained, which contain rational and periodic-like solutions. This method is straightforward and concise, and it can also be applied to other nonlinear evolution equations.  相似文献   

6.
7.
We prove global, scale invariant Strichartz estimates for the linear magnetic Schrödinger equation with small time dependent magnetic field. This is done by constructing an appropriate parametrix. As an application, we show a global regularity type result for Schrödinger maps in dimensions n?6.  相似文献   

8.
Soliton perturbation theory is used to determine the evolution of a solitary wave described by a perturbed nonlinear Schrödinger equation. Perturbation terms, which model wide classes of physically relevant perturbations, are considered. An analytical solution is found for the first-order correction of the evolving solitary wave. This solution for the solitary wave tail is in integral form and an explicit expression is found, for large time. Singularity theory, usually used for combustion problems, is applied to the large time expression for the solitary wave tail. Analytical results are obtained, such as the parameter regions in which qualitatively different types of solitary wave tails occur, the location of zeros and the location and amplitude of peaks, in the solitary wave tail. Two examples, the near-continuum limit of a discrete NLS equation and an explicit numerical scheme for the NLS equation, are considered in detail. For the discrete NLS equation it is found that three qualitatively different types of solitary wave tail can occur, while for the explicit finite-difference scheme, only one type of solitary wave tail occurs. An excellent comparison between the perturbation solution and numerical simulations, for the solitary wave tail, is found for both examples.  相似文献   

9.
A five-dimensional symmetry algebra consisting of Lie point symmetries is firstly computed for the nonlinear Schrödinger equation, which, together with a reflection invariance, generates two five-parameter solution groups. Three ansätze of transformations are secondly analyzed and used to construct exact solutions to the nonlinear Schrödinger equation. Various examples of exact solutions with constant, trigonometric function type, exponential function type and rational function amplitude are given upon careful analysis. A bifurcation phenomenon in the nonlinear Schrödinger equation is clearly exhibited during the solution process.  相似文献   

10.
In this paper, we study the concentration phenomenon of a positive ground state solution of a nonlinear Schrödinger equation on RN. The coefficient of the nonlinearity of the equation changes sign. We prove that the solution has a maximum point at x0Ω+={xRN:Q(x)>0} where the energy attains its minimum.  相似文献   

11.
We study the existence of positive solutions to the elliptic equation ε2Δu(x,y)−V(y)u(x,y)+f(u(x,y))=0 for (x,y) in an unbounded domain subject to the boundary condition u=0 whenever is nonempty. Our potential V depends only on the y variable and is a bounded or unbounded domain which may coincide with . The positive parameter ε is tending to zero and our solutions uε concentrate along minimum points of the unbounded manifold of critical points of V.  相似文献   

12.
In this paper we investigate the existence of positive solutions for the quasilinear Schrödinger equation:
−Δu+V(x)u−Δ(u2)u=g(u),Δu+V(x)uΔ(u2)u=g(u),
in RNRN, where N?3N?3, g has a quasicritical growth and V is a nonnegative potential, which can vanish at infinity.  相似文献   

13.
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to nonintegrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the nonlinear Schrödinger equation.  相似文献   

14.
Considering the propagation of ultrashort pulse in the realistic fiber optics, a generalized variable-coefficient higher-order nonlinear Schrödinger equation is investigated in this paper. Under certain constraints, a new 3×3 Lax pair for this equation is obtained through the Ablowitz-Kaup-Newell-Segur procedure. Furthermore, with symbolic computation, the Darboux transformation and nth-iterated potential transformation formula for such a model are explicitly derived. The corresponding features of ultrashort pulse in inhomogeneous optical fibers are graphically discussed by the one- and two-soliton-like solutions.  相似文献   

15.
The paper is devoted to study of traveling waves of nonlinear Schrödinger equation with distributed delay by applying geometric singular perturbation theory, differential manifold theory and the regular perturbation analysis for a Hamiltonian system. Under the assumptions that the distributed delay kernel is strong general delay kernel and the average delay is small, we first investigate the existence of solitary wave solutions by differential manifold theory. Then by utilizing the regular perturbation analysis for a Hamiltonian system, we explore the periodic traveling wave solutions.  相似文献   

16.
17.
In this paper we study the existence of stationary solutions for the following discrete vector nonlinear Schrödinger equation
  相似文献   

18.
We will consider the relation between the number of positive standing waves solutions for a class of coupled nonlinear Schrödinger system in RN and the topology of the set of minimum points of potential V(x). The main characteristics of the system are that its functional is strongly indefinite at zero and there is a lack of compactness in RN. Combining the dual variational method with the Nehari technique and using the Concentration-Compactness Lemma, we obtain the existence of multiple solutions associated to the set of global minimum points of the potential V(x) for ? sufficiently small. In addition, our result gives a partial answer to a problem raised by Sirakov about existence of solutions of the perturbed system.  相似文献   

19.
Different kinds of optical wave solutions to the nonlinearly dispersive Schrödinger equation are given according to different parameters’ regions. Those solutions include looped wave solutions, cusped wave solutions, peaked wave solutions, compacted wave solutions. The looped and cusped forms have not been reported in the literature regarding to the study of the nonlinear Schrödinger equation. We also study the limiting behavior of all periodic solutions as the parameters trend to some special values.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号