首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Abstract— Nondividing human fibroblasts are inactivated by radiation from a source (a Westinghouse sun lamp) that simulates the UV spectrum of sunlight. Survival curves determined for a DNA excision repair-proficient and a repair-deficient strain (XP12BE) are related to those determined using germicidal light (254 nm) by constant fluence modification factors. In addition, the same fraction of XP12BE cells are killed per pyrimidine dimer by 254 nm and sun lamp light. These results, when related to other survival and photoreactivation studies, suggest that the mechanism for inactivation of nondividing human cells by sun lamp light is the same as that by 254 nm and that pyrimidine dimers are the major responsible photolesion. Repair reverses some of the lethal effects of this light. We suggest that these conclusions apply to sunlight-irradiated skin cells in vivo.  相似文献   

2.
Abstract The rate of excision of sunlight-induced pyrimidine dimers in DNA of exposed human cells was determined. Two normal excision repair-proficient human diploid fibroblast strains (WS-1 and KD) and a repair-deficient strain (XP12BE, group A) maintained in a nondividing state were exposed to summer noon-time sunlight for times (5 and 20 min) that induced numbers of dimers equivalent to far UV (254 nm) exposures of 1 and 4 J/m2. Pyrimidine dimers were quantified in extracted DNA using a U V-endonuclease-alkaline sedimentation assay. The excision rates of these dimers were similar to those observed for the excision of UV-induced pyrimidine dimers. No sunlight-induced inhibition or stimulation of DNA repair was observed in either strain at these low exposures.  相似文献   

3.
Abstract Using normal human fibroblasts we have determined the ability of far (254 nm), mid (310 nm) or near (365 nm) UV radiation to: (i) induce pyrimidine dimers (detected as UV endonuclease sensitive sites) and DNA single-strand breaks (detected in alkali); (ii) elicit excision repair, monitored as unscheduled DNA synthesis (UDS); and (iii) reduce colony-forming ability. Unscheduled DNA synthesis studies were also performed on dimer excision-defective xeroderma pigmentosum (XP) cells, and the survival studies were extended to include XP and Bloom's syndrome (BS) strains. UV-induced cell killing in normal, BS and XP cells was found to relate to an equivalent dimer load per genome after 254 or 310 nm exposure, whereas at 365 nm the lethal effects of non-dimer damage appeared to predominate. Lethality could not be correlated with DNA strand breakage at any wavelength. The two XP strains examined showed the same relative UDS repair deficiency at the two shorter wavelengths in keeping with a predominant role for pyrimidine dimer repair in the expression of UDS. However, UDS was not detected in 365 nm UV-irradiated normal and XP cells despite dimer induction; this effect was due to the inhibition of DNA repair functions since 365 nm UV-irradiated normal cells showed reduced capacity to perform UDS subsequent to challenge with 254 nm UV radiation.
In short, the near UV component of sunlight apparently induces biologically important non-dimer damage in human cells and inhibits DNA repair processes, two actions which should be considered when assessing the deleterious actions of solar UV.  相似文献   

4.
—Action spectra for UV-induced lethality as measured by colony forming ability were determined both for a normal human skin fibroblast strain (lBR) and for an excision deficient xeroderma pigmentosum strain (XP4LO) assigned to complementation group A using 7 monochromatic wavelengths in the range 254-365 nm. The relative sensitivity of the XP strain compared to the normal skin fibroblasts shows a marked decrease at wavelengths longer than 313 nm. changing from a ratio of about 20 at the shorter wavelengths to just greater than 1.0 at the longer wavelengths. The action spectra thus indicate that the influence on cell inactivation of the DNA repair defect associated with XP cells is decreased and almost reaches zero at longer UV wavelengths. This would occur, for example, if the importance of pyrimidine dimers as the lethal lesion decreased with increasing wavelength. In common with other studies both in bacterial and mammalian cells, our results are consistent with pyrimidine dimers induced in DNA being the major lethal lesion in both cell strains over the wavelength range 254-313 nm. However, it is indicated that different mechanisms of inactivation operate at wavelengths longer than 313 nm.  相似文献   

5.
Abstract— 4ells from patients with the sun sensitive cancer-prone disease, xeroderma pigmentosum (XP) have defective repair of UV damaged DNA with reduced excision of the major photoproduct, the cyclobutane type pyrimidine dimer. Other (non-dimer) photoproducts, have recently been implicated in UV mutagenesis. Utilizing an expression vector host cell reactivation assay, we studied UV damaged transfecting DNA that was treated by in vitro photoreactivation to reverse pyrimidine dimers while not altering other photoproducts. We found that the reduced expression of a UV damaged transfecting plasmid in XP complementation group A cells is only partially reversed by photoreactivation. E. coli photolyase treatment of pSV2catSVgpt exposed to 100 or 200 J m−2 of 254 nm radiation removed 99% of the T4 endonuclease V sensitive sites. Transfection of XP12BE(SV40) cells with photoreactivated pSV2catSVgpt showed residual inhibition corresponding to 25 to 37% of the lethal hits to the cat gene. This residual inhibition corresponds to the fraction of non-dimer photoproducts induced by UV. This result implies that XP12BE(SV40) cells do not repair most of the non-dimer photoproducts in DNA.  相似文献   

6.
Abstract— XP4L0, a xeroderma pigmentosum complementation group A strain, exhibits very limited DNA repair activity. It has extreme sensitivity to UV (254 nm) as determined by colony forming ability. The rate of loss of UV (1 J/m2)-induced pyrimidine dimers from populations of quiescent, nondividing XP4LO cells was determined and found to be slower than that observed for other group A strains (XP25R0, XP12BE, XP8LO). The extreme UV-sensitivity is also exhibited by the nondividing cells in a survival assay that employs nondividing cell populations and does not involve cell reproduction. This result suggests that the extreme sensitivity measured previously by colony-forming ability (a cell-reproduction assay) is due to the excision repair defect alone and not to an additional post-replication repair defect. The very limited excision allows for an accurate definition of target size for inactivation of nondividing cells, about 1 pyrimidine dimer per 105 base pairs, and when compared to results observed for other XP-A strains, provides further evidence that even though excision repair in group A is severely limited, it has biological significance.  相似文献   

7.
Sunlight-induced killing of nondividing human cells in culture   总被引:1,自引:0,他引:1  
Nondividing populations of human diploid fibroblasts that are DNA excision repair proficient (WS-1, KD. SSCW) and repair deficient (XP12BE) were exposed to mid-day summer sunlight for a determination of survival based on an ability of cells to remain attached to a culture vessel surface. Whereas mid- and far-UV wavelengths and radiation emitted from a sunlamp cause a gradual degeneraton and detachment of cells in a dose-dependent manner, sunlight does not promote cell killing that is evidenced by these criteria in repair proficient cells. Detachment of repair deficient cells is promoted to a limited extent but only at sunlight exposure times that are low with respect to the amount of DNA damage (pyrimidine dimers) induced. Repair proficient and deficient cells exposed to sunlight for longer times do not detach but are incapable of excuding a viable stain several days after exposure and appear as histologically fixed cells. Pyrimidine dimer levels in these sunlight irradiated cells were great enough to have promoted detachment had these levels been induced by UV (254 nm) alone. Other photodamage induced by these exposures evidently inhibits the dimer-induced cell degeneration that leads to cell detachment. We conclude that pyrimidine dimers are responsible for cell killing at short sunlight exposure times (< 40 min) but that at longer exposures (> 80 min) cells arc killed by a different mechanism that is independent of dimer-caused death.  相似文献   

8.
A 1 m diameter water lens was used to focus solar radiation, giving an 8-fold concentration of the total spectrum and a cytocidal flux similar to that of laboratory UV sources. Survival curves for human melanoma cells were similar for sunlight and 254 nm UV, in that D q, was usually larger than D o. An xeroderma pigmentosum lymphoblastoid line was equally sensitive to both agents and human cell lines sensitive to ionizing radiation (lymphoblastoid lines), crosslinking agents or monofunctional alkylating agents (melanoma lines) had the same 254 nm UV and solar survival responses as appropriate control lines. Two melanoma sublines derived separately by 16 cycles of treatment with sunlight or 254 nm UV were crossresistant to both agents. In one melanoma cell line used for further studies, DNA strand breaks and DNA-protein crosslinking were induced in melanoma cells by sunlight but pyrimidine dimers (paper chromatography) and DNA interstrand crosslinking (alkaline elution) could not be detected. The solar fiuence response of DNA repair synthesis was much less than that from equitoxic 254 nm UV, reaching a maximum near the D o value and then declining; semiconservative DNA synthesis on the other hand remained high. These effects were not due to changes in thymidine pool sizes. Solar exposure did not have a major effect on 254 nm UV-induced repair synthesis.  相似文献   

9.
Abstract— Non-dividing human cells degenerate and eventually detach from a culture vessel surface when exposed to UV light. Action spectra for this kind of cell inactivation were determined using eight monochromatic wavelengths from 240 to 313 nm and both a normal DNA excision-repair-proficient strain and a repair-deficient Xeroderma pigmentosum (XP12BE) strain. The action spectra for both strains have similar shapes with a broad peak between 254 and 280 nm followed by a steep decline at wavelengths greater than 280 nm. The relative action spectra are similar to those for inactivation of reproductive capacity and pyrimidine dimer formation in rodent cells suggesting that the critical target and critical damage for inactivation of non-dividing human cells is DNA and damage to DNA, respectively. Normal repair-proficient cells are 5–7 times more resistant at all wavelengths, based on a comparison of Do values, than repair-deficient XP12BE cells, supporting the conclusion that the inactivating damage at all wavelengths is to DNA.  相似文献   

10.
Abstract— The specific heterodikaryon complementation method enabled us to assign three patients with mild xeroderma pigmentosum (XP) symptoms (XP25KO, XP27KO, XP28KO) to complementation group F. UV-induced unscheduled DNA synthesis (UDS) remained unnormalized in the heterodikaryons between either of the above three XP strains and the reference group F XP3YO. All these particular XP strains as well as XP3YO exhibited an equally low level of10–15% UDS by a 3 h [3H]-thymidine labeling following 10 J/m2 254 nm UV, while they attained 60% UDS of normal at an extended time of 25 h. The present group F strains were 3 and 1.5 times as sensitive to the lethal effect of UV as normal and XP group E cells, respectively, based on the mean lethal dose ( Do ) comparison. Normal cells had the biphasic time-UDS kinetics of early rapid and late slow repair. Characteristically, however, all of the present group F strains were defective in only early rapid repair, but normally proficient in slow repair.  相似文献   

11.
Abstract— Cultured fishcells(RBCF–1 line) were irradiated with filtered sun lamp ultraviolet (SL-UV; > 280 nm) together with or followed by illumination with daylight(DL) radiation (> 350 nm). The colony forming ability of the cells decreased with increasing fluence of SL-UV. Concurrent exposure of cells to SL-UV and DL, however, increased survival relative to exposure to SL-UV alone. The photoreactivable fraction reached 0.52 at22–25C. By using a constant fluence modification factor of 86, the shape of dose-survival curve was found to be almost the same for 254 nm and SL-UV. In parallel with photoreactivation of cell survival, changes in the numbers of pyrimidine dimers in permeabilized cell DNA and in extracted total DNA were determined by measurements of endonuclease-sensitive sites (ESS). The yield of ESS in both DNA's increased almost linearly with increasing SL-UV fluence, although the yield in extracted DNA was about double of that in permeabilized cell DNA. The yield of ESS per unit fluence by 254 nm was about 70-fold greater than SL-UV. The fraction of cells inactivated per ESS was almost the same for 254 UV and SL-UV. In SL-UV-irradiated cells, the photoreactivable fractions in terms of ESS were 10% higher in extracted DNA than in the DNA of permeabilized cells and also were higher when DL was administered separately after SL-UV-irradiation. When irradiated cells were exposed to DL at 0C, the photoreactivable fractions of both DNAs were appreciably less, indicating that the photoreactivation of ESS was enzymatic. These results support the suggestion that the mechanism for cell killing, mainly formation of pyrimidine dimers, by SL-UV is the same as that by 254 UV.  相似文献   

12.
Abstract Reciprocity (total applied fluence produces the same response, regardless of the fiuence rate) for the lethal effects caused by 365 and 254 nm ultraviolet light (UV) was studied for repair-proficient and -deficient Escherichia coli strains. In the repair-proficient strain, E. coli WP2 uvrA * recA *, reciprocity after 365 nm UV was only observed at fluence rates of about 750 Wm-2 and above. Below this rate, the cells became increasingly sensitive as the fluence rate was decreased. Similar lack of reciprocity was obtained whether the cells were exposed at 0 or 25°C. The double repair-defective mutant, E. coli WP100 uvrA recA , showed complete reciprocity after 365 nm UV over the same range of fluence rates measured for the repair-proficient strain. For 254 nm UV, complete reciprocity occurred in both strains over a range of fluence rates differing by an order of magnitude.  相似文献   

13.
Abstract— Structural alterations of DNA irradiated with UV light were analyzed by the agarose gel technique. Relaxed, circular pAT 153 DNA molecules were sensitized by broad band radiation with a maximum at 313 nm in the presence of silver ions or irradiated with 254 nm light in buffer only. In both cases the electrophoretic mobility of DNA topoisomers was altered as a linear function of UV exposure. For DNA irradiated in the sensitized reaction the unwinding angle per site sensitive to Micrococcus luteus pyrimidine dimer endonuclease was found tobe–11.4°. This value is significantly smaller thanthe–14.3° already known for DNA topoisomers irradiated with 254 nm light. The irradiated DNAs were a very good substrate for the Escherichia coli photoreactivating enzyme (PRE). However, the photoenzymic removal of all sites sensitive to the endonuclease specific for pyrimidine dimers was not coupled to a full restoration of the original electrophoretic mobility. Thirty and 23% of the unwinding were still present in the photoreactivated topoisomers and the unwinding angles per pyrimidine dimer were then recalculatedas–10.1°and–8.7° for DNAs irradiated with 254 nm and sensitized, respectively. The limited difference between these two values could result from the different base composition of the pyrimidine dimers generated in the conditions of irradiation used. These results show that the tertiary structure of DNA is measureably altered by UV photodamages other than pyrimidine dimers.  相似文献   

14.
Abstract— Ultraviolet light causes a type of damage to the DNA of human cells that results in a DNA strand break upon subsequent irradiation with wavelengths around 300 nm. This DNA damage disappears from normal human fibroblasts within 5 h, but not from pyrimidine dimer excision repair deficient xeroderma pigmentosum group A cells or from excision proficient xeroderma pigmentosum variant cells. The apparent lack of repair of the ultraviolet light DNA damage described here may contribute to the cancer prone nature of xeroderma pigmentosum variant individuals. These experiments show that the same amount of damage was produced at 0°C and 37°C indicating a photodynamic effect and not an enzymatic reaction. The disappearance of the photosensitive lesions from the DNA is probably enzymatic since none of the damage was removed at 0°C. Both the formation of the lesion and its photolysis by near ultraviolet light were wavelength dependent. An action spectrum for the formation of photosensitive lesions was similar to that for the formation of pyrimidine dimers and(6–4) photoproducts and included wavelengths found in sunlight. The DNA containing the lesions was sensitive to wavelengths from 304 to 340 nm with a maximum at 313 to 317 nm. This wavelength dependence of photolysis is similar to the absorption and photolysis spectra of the pyrimidine(6–4) photoproducts  相似文献   

15.
Abstract— We have examined the relationship between the survival curves obtained with UV light (254 nm) and those obtained with a near-UV sburce (Westinghouse Sun Lamps, FS20) simulating sunlight for cultured Chinese hamster cells, C3H mouse cells, and HeLa cells. In no case do the "sunlight" survival curves have the same shape as the UV survival curves. Also, the combined lethal effects of UV and near-UV, sunlight-like exposures are not entirely additive. Hence, we conclude that (1) the cell-killing photolesions induced by these radiations are at most only partly the same, and (2) in view of (I), caution should be exercised in predicting near UV-induced dose-dependencies of other end points based upon observations with UV.  相似文献   

16.
The DNA repair capacities of three unrelated Cockayne syndrome (CS) fibroblast strains were compared to that of three unrelated xeroderma pigmentosum (XP) strains for three different DNA damaging agents using a sensitive host cell reactivation (HCR) technique. Adenovirus type 2 (Ad 2) was treated with either UV light, gamma-rays or sunlamp-irradiation and subsequently assayed for its ability to form viral structural antigens (Vag) in the CS and XP strains using immunofluorescent straining. D37 values for the survival of Ad 2 Vag synthesis in the CS and XP strains, expressed as a percentage of those obtained in normal strains, were used as a measure of DNA repair capacity. Percent HCR values in the XP strains XP25RO, XP2BE and XP5BE respectively were lowest for UV (6, 14 and 6%), intermediate for sunlamp-irradiation (18, 32 and 10%) and highest for gamma-irradiation (65, 61 and 60%), whereas for the CS strains CS1BE, CS3BE and CS278CTO respectively, percent HCR values were lowest for UV (26, 30 and 34%), intermediate for gamma-irradiation (61, 64 and 69%) and near normal for sunlamp-irradiation (82, 73 and 89%). These results suggest that the 'spectrum of lesions' which is defectively repaired in CS is not the same as that which is defectively repaired in XP.  相似文献   

17.
Pretreatment of growing normal and xeroderma pigmentosum (XP) human fibroblasts with sodium butyrate at concentrations of 5-20 m M results in increased levels of DNA repair synthesis measured by autoradiography after exposure of the cells to 254 nm UV radiation in the fluence range 0-25 J/m2. The phenomenon manifests as an increased extent and an increased initial rate of unscheduled DNA synthesis (UDS). This experimental result is not due to an artifact of autoradiography related to cell size. Xeroderma pigmentosum cells from complementation groups A, C, D and E and XP variant cells all exhibit increases in the levels of UV-induced UDS in response to sodium butyrate proportional to those observed with normal cells. These UDS increases associated with butyrate pretreatment correlate with demonstrable changes in intracellular thymidine pool size and suggest that sodium butyrate enhances uptake of exogenous radiolabeled thymidine during UV-induced repair synthesis by reducing endogenous levels of thymidine.  相似文献   

18.
Abstract— Sensitivity to monochromatic 254- and 365-nm radiation was compared in closely related yeast strains with defects in one or more of the excision-repair ( rad1 ), error-prone repair ( rad18 ), or recombinational-repair ( rad51 ) pathways. At 254 nm, mutants defective in a single repair pathway exhibited slight to moderate UV sensitivity; those defective in two separate pathways were somewhat more UV sensitive, while triple mutants defective in all three pathways exhibited extreme UV sensitivity with a lethal event corresponding to 0.05 J m−2. Repair defects also rendered mutants sensitive to 365-nm radiation; strains with single defects exhibited slight sensitivity, mutants with two defective pathways were more sensitive, and triple mutants exhibited maximal sensitivity with a lethal event corresponding to 2.4 times 104 J m−2. In the triple mutant ( rad1, rad18, rad51 ) at both 254 and 365 nm, the dose per lethal event was almost identical with comparable values in a repair-deficient double mutant ( uvrA, recA ) of Escherichia coli. In the E. coli mutant pyrimidine dimers are believed to be the primary cause of lethality at both wavelengths. Evidence for dimer involvement in the yeast mutant was obtained by demonstrating that lethality at both 254 and 365 nm was photoreactivated by light at 405 nm.  相似文献   

19.
Normal human skin fibroblasts were exposed to 0-10 J m-2 of 254 nm UV, incubated 0-16 h and then treated with 0-150 kJ m-2 of sunlamp UV greater than 315 nm. For each treatment, the cells were subjected to alkaline elution in order to measure the yield of single strand breaks (ssb) produced. It was found that treatment of 254-nm-irradiated cells with sunlamp UV greater than 315 nm resulted in the production of a higher level of ssb than that produced by separate exposures. Hence, lesions are produced by the 254 nm irradiation that are photolyzed through exposure to sunlamp UV greater than 315 nm. Approximately 50% of these lesions are removed following a 2-4 h incubation of the 254-nm-irradiated cells and nearly complete removal is achieved by 16 h. In addition, the profiles for elutions performed at pH 12.8 with cells exposed to the combined treatment were indicative of the presence of alkali labile sites. The repair kinetics of this lesion and alkaline lability of the photolysis product suggest that this photosensitive lesion may represent pyrimidine(6-4)pyrimidone photoproducts. Hence, this approach may represent a relatively simple and sensitive assay for the measurement of this DNA damage.  相似文献   

20.
An immunoslot blot assay was developed to detect pyrimidine dimers induced in DNA by sublethal doses of UV (254 nm) radiation. Using this assay, one dimer could be detected in 10 megabase DNA using 200 ng or 0.5 megabase DNA using 20 ng irradiated DNA. The level of detection, as measured by dimer specific antibody binding, was proportional to the dose of UV and amount of irradiated DNA used. The repair of pyrimidine dimers was measured in human skin fibroblastic cells in culture following exposure to 0.5 to 5 J m-2 of 254 nm UV radiation. The half-life of repair was approximately 24, 7 and 6 h in cells exposed to 0.5, 2 and 5 J m-2 UV radiation, respectively. This immunological approach utilizing irradiated DNA immobilized to nitrocellulose should allow the direct quantitation of dimers following very low levels of irradiation in small biological samples and isolated gene fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号