首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cobalt‐mediated radical polymerizations (CMRPs) utilizing redox initiation are demonstrated to produce poly(vinyl ester) homopolymers derived from vinyl pivalate (VPv) and vinyl benzoate (VBz), and their block copolymers with vinyl acetate (VAc). Combining anhydrous Co(acac)2, lauroyl peroxide, citric acid trisodium salt, and VPv at 30 °C results in controlled polymerizations that yield homopolymers with Mn = 2.5–27 kg/mol with Mw/Mn = 1.20–1.30. Homopolymerizations of scrupulously purified VBz proceed with lower levels of control as evidenced by broader polydispersities over a range of molecular weights (Mn = 4–16 kg/mol; Mw/Mn = 1.34–1.65), which may be interpreted in terms of the decreased nucleophilicity of these less electron donating propagating polymer chain ends. Based on these results, we demonstrate that sequential CMRP reactions present a viable route to microphase separated poly(vinyl ester) block copolymers as shown by small‐angle X‐ray scattering analyses. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
The copolymerization of racemic β‐butyrolactone (rac‐BLMe) with racemic “allyl‐β‐butyrolactone” (rac‐BLallyl) in toluene, catalyzed by the discrete amino‐alkoxy‐bis(phenolate) yttrium‐amido complex 1 , gave new poly(β‐hydroxyalkanoate)s with unsaturated side chains. The poly(BLMeco‐BLallyl) copolymers produced have a highly syndiotactic backbone structure (Pr = 0.80–0.84) with a random enchainment of monomer units, as evidenced by 13C NMR, and high molecular weight (Mn up to 58,000 g mol?1) with a narrow polydispersity (Mw/Mn = 1.07–1.37), as determined by GPC. The comonomer incorporation (5–50 mol % rac‐BLallyl) was a linear function of the feed ratio. The pendant vinyl bond of the side‐chains in those poly(BLMeco‐BLallyl) copolymers allowed the effective introduction of hydroxy or epoxy groups via dihydroxylation, hydroboration‐oxidation or epoxidation reactions. NMR studies indicated that all of these transformations proceed in an essentially quantitative conversion and do not affect the macromolecular architecture. Some thermal properties (Tm, ΔHm, Tg) of the prepared polymers have been also evaluated. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3177–3189, 2009  相似文献   

4.
Aromatic poly(amic acids) derived from pyromellitic dianhydride and 4,4′,-diaminodiphenyl ether were characterized by dilute solution techniques. Number-average molecular weights M?n of 13 samples ranged from 13,000 to 55,000 (DP 31–131). Weight-average molecular weights M?w of 21 samples ranged from 9,900 to 266,000. The ratio M?w/M?n was between 2.2 and 4.8. Heterogeneous polymerization yielded higher molecular weight polymer than homogeneous polymerization. The molecular weight could be varied systematically by control of stoichiometric imbalance. Use of very pure monomers and solvent gave polymers of relatively high number-average molecular weight (~50, 000) and the most probable molecular weight distribution M?w/M?n = 2. Impure monomers and/or solvent resulted in lower number-average molecular weight (M?n ? 20,000–30,000) and wider distributions (M?w/M?n = 3–5). The Mark-Houwink relation obtained was [η] = 1.85 × 10?4M?w0.80 The exponent is characteristic of moderately extended solvated coils. The unperturbed chain dimensions (r02 /M)1/2 were 0.848 A., and the steric factor σ was 1.24 which is close to the limiting value of unity for an equivalent chain with free internal rotations. The sedimentation constant–molecular weight relation was S0 = 2.70 × 10?2M?w0.39. This exponent is consistent with the Mark-Houwink exponent.  相似文献   

5.
Synthesis of multibranched star-shaped polyethers having poly(ethylene oxide)s (PEO) arms is described. The novel method of preparing these multibranched macromolecules consists in reaction of the -OH ended oligomers with dicyclic compounds; e.g. monoalkyl ethers of poly(ethylene oxide) with diepoxides in the presence of a basic catalyst, converting a part of the ∼OH groups into ∼OCσ end groups (alkoxide anions). Analysis of the structure of these macromolecules was mostly based on 1H NMR, MALDI-TOF, and SEC with triple detection. The absolute values of Mw (LS), Mw/Mn, and [η] are given, indicating formation of macromolecules of high molar mass and highly branched. The number of branches was estimated by several methods, including comparison of the Mark-Houwink (M-H) dependencies of the obtained products with the M-H dependence for PEO stars with exactly known number of arms. The final stars were phosphorylated at the −OH ended branches. Almost exclusively monoesters of phosphoric acid were found in 31P (1H) NMR.  相似文献   

6.
Cationic copolymerizations of cis- and trans-propenyl ethyl ethers (PEE) with isobutenyl ethyl ether (IBEE) were carried out in methylene chloride at ?78°C with the use of boron trifluoride etherate as catalyst. Monomer reactivity ratios were r1 = 24.0 ± 2.4 and r2 = 0.02 ± 0.02 for the cis-PEE (M1)–IBEE (M2) system and r1 = 19.1 ± 1.8 and r2 = 0.04 ± 0.02 for the trans-PEE (M1)–IBEE (M2) system, indicative of the reactivity order: cis-PEE > trans-PEE ? IBEE. In separate experiments, these β-methyl-substituted vinyl ethers were allowed to react with various acetals in the presence of boron trifluoride etherate. The relative reactivities of these ethers were generally found to decrease in the order: cis-β-monomethylvinyl > vinyl > trans-β-monomethylvinyl > β,β-dimethylvinyl. Comparisons of these results with previously published copolymerization data have permitted the conclusion that, in both the copolymerizations and acetal additions, the single β-methyl substitution on vinyl ethers exerts little steric effect against their additions toward any alkoxycarbonium ion, whereas the β,β-dimethyl substitution results in a large adverse steric effect toward both β-monomethyl- and β,β-dimethyl-substituted alkoxycarbonium ions.  相似文献   

7.
This study deals with control of the molecular weight and molecular weight distribution of poly(vinyl acetate) by iodine‐transfer radical polymerization and reversible addition‐fragmentation transfer (RAFT) emulsion polymerizations as the first example. Emulsion polymerization using ethyl iodoacetate as the chain transfer agent more closely approximated the theoretical molecular weights than did the free radical polymerization. Although 1H NMR spectra indicated that the peaks of α‐ and ω‐terminal groups were observed, the molecular weight distributions show a relatively broad range (Mw/Mn = 2.2–4.0). On the other hand, RAFT polymerizations revealed that the dithiocarbamate 7 is an excellent candidate to control the polymer molecular weight (Mn = 9.1 × 103, Mw/Mn = 1.48), more so than xanthate 1 (Mn = 10.0 × 103, Mw/Mn = 1.89) under same condition, with accompanied stable emulsions produced. In the Mn versus conversion plot, Mn increased linearly as a function of conversion. We also performed seed‐emulsion polymerization using poly(nonamethylene L ‐tartrate) as the chiral polyester seed to fabricate emulsions with core‐shell structures. The control of polymer molecular weight and emulsion stability, as well as stereoregularity, is also discussed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
Trimethoxyvinylsilane (TMVS) was quantitatively polymerized at 130 °C in bulk, using dicumyl peroxide (DCPO) as initiator. The polymerization of TMVS with DCPO was kinetically studied in dioxane by Fourier transform near‐infrared spectroscopy. The overall activation energy of the bulk polymerization was estimated to be 112 kJ/mol. The initial polymerization rate (Rp) was expressed by Rp = k[DCPO]0.6[TMVS]1.0 at 120 °C, being closely similar to that of the conventional radical polymerization involving bimolecular termination. The polymerization system involved electron spin resonance (ESR) spectroscopically observable polymer radicals under the actual polymerization conditions. ESR‐determined apparent rate constants of propagation and termination were 13 L/mol s and 3.1 × 104 L/mol s at 120 °C, respectively. The molecular weight of the resulting poly(TMVS)s was low (Mn = 2.0–4.4 × 103), because of the high chain transfer constant (Cmtr = 4.2 × 10?2 at 120 °C) to the monomer. The bulk copolymerization of TMVS (M1) and vinyl acetate (M2) at 120 °C gave the following copolymerization parameters: rl = 1.4, r2 = 0.24, Q1 = 0.084, and e1 = +0.80. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5864–5871, 2005  相似文献   

9.
Syntheses and radical polymerizations of vinyl and isopropenyl carbamates having L -leucine methyl ester structures, N-vinyloxycarbonyl-L -leucine methyl ester (VOC-L-M) and N-isopropenyloxycarbonyl-L -leucine methyl ester (IOC-L-M), were carried out. VOC-L-M and IOC-L-M were prepared by the reactions of L -leucine methyl ester with vinyl and isopropenyl chloroformates in the presence of sodium hydrogen carbonate. The radical polymerization of VOC-L-M with AIBN (1 mol %) in bulk, chlorobenzene, methanol, and N,N-dimethylformamide afforded the corresponding polymer (poly(VOC-L-M)) with M n 7,400–19,000. Meanwhile, IOC-L-M afforded no polymer with AIBN at 60°C but afforded a polymer having low molecular weight with BPO at 80°C. The glass transition temperatures of poly(VOC-L-M) and poly(IOC-L-M) were 53 and 65°C, respectively. The 10% weight loss temperatures of poly(VOC-L-M) and poly(IOC-L-M) under nitrogen were 255 and 173, respectively. The copolymerization parameters of VOC-L-M (M1) and vinyl acetate (M2) were evaluated as r1 = 0.92 and r2 = 0.63. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
A series of new functional poly(ethylene‐co‐vinyl alcohol)‐g‐polystyrene graft copolymers (EVAL‐g‐PS) with controlled molecular weight (Mn = 38,000–94,000 g mol?1) and molecular weight distribution (Mw/Mn = 2.31–3.49) were synthesized via a grafting from methodology. The molecular structure and component of EVAL‐g‐PS graft copolymers were confirmed by the analysis of their 1H NMR spectra and GPC curves. The porous films of such copolymers were fabricated via a static breath‐figure (BF) process. The influencing factors on the morphology of such porous films, such as solvent, temperature, polymer concentration, and molecular weight of polymer were investigated. Ordered porous film and better regularity was fabricated through a static BF process using EVAL‐g‐PS solution in CHCl3. Scanning electron microscopy observation reveals that the EVAL‐g‐PS graft copolymer is an efficient compatibilizer for the blend system of low‐density polyethylene/polystyrene. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 516–524  相似文献   

11.
The relationship of intrinsic viscosity to the number-average molecular weight has been obtained for poly-3,4-dichlorostyrene and poly-p-cyclohexylstyrene in a few solvents. Values of (〈L20/M)1/2 have been estimated for poly-3,4-dichlorostyrene and poly-p-cyclohexylstyrene through the use of the treatment of Stockmayer and Fixman. The values of (〈L0/M)1/2 have been obtained as 2.18 ± 0.08 and 2.52 ± 0.07 for poly-3,4-dichlorostyrene and poly-p-cyclohexylstyrene, respectively. The σ value of a series of polystyrene derivatives has been found to increase with the bulk of side groups. This seems to indicate that the σ value is mainly determined by the steric repulsion between side groups.  相似文献   

12.
After main-chain scission in a polymer, the frequency of encounter between segments in the different fragments is related to the separating process between the fragments. The relationship obtained shows that the separating time is proportional to M ½, where M is the molecular weight, when the excluded volume disappears. When good solvent is used, the half-time for the separation is obtained as τ½ = const. M 0.16–0.22, which is approximated to the experimental data obtained previously (τ½ = const. M 0.34 and τ½ = const. M 0.22) for the degradations of polyisobutene and poly(phenyl vinyl ketone), respectively. The increase of the half-time with increasing coil density can be explained by the excluded volume. The inverse proportionality of the diffusion of segments to solvent viscosity explains the proportionality of the half-time to microviscosity. The above separating process reverses the reaction between polymer radicals. From their dependence on the chain length, τ½/kD = const. M ½ (where kD is the specific rate for the reaction), is estimated. Such an approximation holds, regardless of the type of solvent.  相似文献   

13.
The accelerated single electron transfer–degenerative chain transfer mediated living radical polymerization (SET–DTLRP) of vinyl chloride (VC) in H2O/tetrahydrofuran (THF) at 25 °C is reported. This process is catalyzed by sodium dithionite (Na2S2O4)‐sodium bicarbonate (NaHCO3). Electron transfer cocatalysts (ETC) 1,1′‐dialkyl‐4,4′‐bipyridinum dihalides or alkyl viologens were also employed in this polymerization. The resulting poly(vinyl chloride) (PVC) has a number‐average molecular weight (Mn) = 2,000–12,000, no detectable amounts of structural defects, and both active chloroiodomethyl and inactive chloromethyl chain ends. The molecular weight distribution of PVC obtained is Mw/Mn = 1.5. The surface active agents afford the final polymers as a powder and provide an acceleration of the rate of polymerization. The role of ETC is to accelerate the single electron transfer (SET) step, whereas THF enhances the degenerative chain transfer (DT) step. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6364–6374, 2004  相似文献   

14.
Experimental data on styrene–acrylonitrile (St–AN), and styrene–methyl methacrylate (St–MMA) copolymers reported in Part I of this series are tested by “two-parameter” theoretical relations. The Fox–Flory (F–F) parameter K is estimated using the F–F, Stockmayer–Fixman (S–F), and Inagaki–Ptitsyn (I–P) equations. In general, the K values obtained by the F–F equation are low for the three St–AN copolymer samples in the systems studied while the values obtained from S–F and I–P equations agree within the limits of experimental error. Values of K obtained from Kurata–Stockmayer (K–S) equation for sample SA1 agree with values obtained by the S–F and I–P equations. The specific solvent effect on the K values is discussed. Values of the unperturbed dimension r?02/M?w, calculated from the K values estimated from the S–F equation and from the homopolymer data are compared. Except in one case, the calculated r?02/M?w values from homopolymer data are low in comparison with the values obtained from experimental data, which shows that the presence of the repulsive interactions between unlike monomer units brings about an expansion of copolymer molecule. The effect of composition on the steric factor σ values is discussed. The long-range interaction parameter B, the excess interaction parameters ΔBAB, and χAB are calculated. The effects of composition and solvent on these parameters are discussed.  相似文献   

15.
A series of well‐defined three‐arm star poly(ε‐caprolactone)‐b‐poly(acrylic acid) copolymers having different block lengths were synthesized via the combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). First, three‐arm star poly(ε‐caprolactone) (PCL) (Mn = 2490–7830 g mol?1; Mw/Mn = 1.19–1.24) were synthesized via ROP of ε‐caprolactone (ε‐CL) using tris(2‐hydroxyethyl)cynuric acid as three‐arm initiator and stannous octoate (Sn(Oct)2) as a catalyst. Subsequently, the three‐arm macroinitiator transformed from such PCL in high conversion initiated ATRPs of tert‐butyl acrylate (tBuA) to construct three‐arm star PCL‐b‐PtBuA copolymers (Mn = 10,900–19,570 g mol?1; Mw/Mn = 1.14–1.23). Finally, the three‐arm star PCL‐b‐PAA copolymer was obtained via the hydrolysis of the PtBuA segment in three‐arm star PCL‐b‐PtBuA copolymers. The chain structures of all the polymers were characterized by gel permeation chromatography, proton nuclear magnetic resonance (1H NMR), and Fourier transform infrared spectroscopy. The aggregates of three‐arm star PCL‐b‐PAA copolymer were studied by the determination of critical micelles concentration and transmission electron microscope. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
Low conversion, low molecular weight homopolymers of α-trifluoromethyl vinyl acetate have been obtained by pyridine initiation and also by employing very large amounts of benzoyl peroxide. Since allylic hydrogens are not present, it appears that the limiting factor in the polymerization of isopropenyl esters is a slow rate of chain growth rather than degradative chain transfer. Copolymerization of the fluoromonomer (M2) with vinyl acetate (M1) yields values of r1 = 0.25 and r2 = 0.20, and for the fluoromonomer values of 0.069 and 1.51, respectively, for Q and e. Whereas ultraviolet initiation of equimolar mixtures of α-trifluoromethyl vinyl acetate and vinyl acetate yields low molecular weight copolymers, diisopropyl percarbonate-initiated room temperature bulk copolymerizations and emulsion copolymerizations yield polymers of high DP . Differential thermal analysis of an equimolar copolymer of vinyl acetate and the fluoromonomer surprisingly yields a sharp endotherm reminiscent of crystalline polymers. The unhydrolyzed copolymers in acetone and the alcoholyzed copolymers in 0.1N alkali exhibit Huggins k′ values of 0.3–0.4. Like ordinary poly(vinyl alcohol), the polyfluoroalcohols lose viscosity in dilute alkali due to retrograde aldol condensations. The solubilities of the polyfluoroalcohols, together with their thermal behavior, NMR spectrum, polarized infrared spectrum, refractive index, abilities to form visible polarizers, and other properties are also described.  相似文献   

17.
Living cationic polymerization of 2‐adamantyl vinyl ether (2‐vinyloxytricyclo[3.3.1.1]3,7decane; 2‐AdVE) was achieved with the CH3CH(OiBu)OCOCH3/ethylaluminum sesquichloride/ethyl acetate [CH3CH(OiBu)OCOCH3/Et1.5AlCl1.5/CH3COOEt] initiating system in toluene at 0 °C. The number‐average molecular weights (Mn's) of the obtained poly(2‐AdVE)s increased in direct proportion to monomer conversion and produced the polymers with narrow molecular weight distributions (MWDs) (Mw/Mn = ~1.1). When a second monomer feed was added to the almost polymerized reaction mixture, the added monomer was completely consumed and the Mn's of the polymers showed a direct increase against conversion of the added monomer. Block and statistical copolymerization of 2‐AdVE with n‐butyl vinyl ether (CH2?CH? O? CH2 CH2CH2CH3; NBVE) were possible via living process based on the same initiating system to give the corresponding copolymers with narrow MWDs. Grass transition temperature (Tg) and thermal decomposition temperature (Td) of the poly(2‐AdVE) (e.g., Mn = 22,000, Mw/Mn = 1.17) were 178 and 323 °C, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1629–1637, 2008  相似文献   

18.
Dielectric constants have been determined for a fraction of poly(diethylene terephthalate) in benzene at several temperatures. The data indicate that the dipole moment ratio 〈μ2〉/Nm2 is somewhat higher than that of poly(ethylene oxide), and its temperature coefficient is in the vicinity of zero. Both the dipole ratio and its temperature coefficient are in very good agreement with those predicted by the rotational isomeric state theory. Using this theory, the unperturbed dimensions of poly(diethylene terephthalate) were calculated and it was found that (〈r2〉/M) = 0.80 Å2 (g mol wt)?1, a value intermediate between those of poly(ethylene oxide) (0.57) and poly(ethylene terephthalate) (1.05).  相似文献   

19.
This study describes a novel precision synthesis strategy for graft copolymers using Friedel–Crafts‐type termination reaction between a cationically prepared poly(styrene derivative) and the naphthyl side groups from a poly(vinyl ether) main chain. The pendant alkoxynaphthyl groups on the poly(vinyl ether) efficiently terminated the living cationic polymerization of p‐acetoxystyrene (AcOSt) with SnCl4 in the presence of ethyl acetate as an added base. This research provides the first example of a well‐defined graft copolymer prepared using this method. The resulting polymer contained 40 poly‐(AcOSt) branches, as calculated from the Mw determined via gel permeation chromatography–MALS analysis, which was in good agreement with the estimated number of branches obtained from 1H NMR analysis. The acetoxy groups in the grafted poly(AcOSt) chains were easily converted into phenolic hydroxy groups under basic conditions. The as‐obtained graft copolymer with poly(p‐hydroxystyrene) side chains exhibited a pH‐sensitive phase separation in water. The synthetic method for preparing the graft copolymers was also effective in the living cationic polymerizations of other styrene derivatives. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4675–4683  相似文献   

20.
Rigid‐rod poly(4′‐methyl‐2,5‐benzophenone) macromonomers were synthesized by Ni(0) catalytic coupling of 2,5‐dichloro‐4′‐methylbenzophenone and end‐capping agent 4‐chloro‐4′‐fluorobenzophenone. The macromonomers produced were labile to nucleophilic aromatic substitution. The molecular weight of poly(4′‐methyl‐2,5‐benzophenone) was controlled by varying the amount of the end‐capping agent in the reaction mixture. Glass‐transition temperatures of the macromonomers increased with increasing molecular weight and ranged from 117 to 213 °C. Substitution of the macromonomer end groups was determined to be nearly quantitative by 1H NMR and gel permeation chromatography. The polymerization of a poly(4′‐methyl‐2,5‐benzophenone) macromonomer [number‐average molecular weight (Mn) = 1.90 × 103 g/mol; polydispersity (Mw)/Mn = 2.04] with hydroxy end‐capped bisphenol A polyaryletherketone (Mn = 4.50 × 103 g/mol; Mw/Mn = 1.92) afforded an alternating multiblock copolymer (Mn = 1.95 × 104 g/mol; Mw/Mn = 6.02) that formed flexible, transparent films that could be creased without cracking. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3505–3512, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号