首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferrocenylmethyl methacrylate (FMMA) was copolymerized with styrene (St), methyl methacrylate (MMA), and ethyl acrylate (EA) in benzene solution at 25°C by γ radiation. The reactions proceeded by a free radical mechanism, and monomer reactivity ratios were derived by the Tidwell–Mortimer method for St(M1)–FMMA(M2), r1 = 0.35 and r2 = 0.46; for MMA(M1–FMMA)(M2), r1 = 0.85 and r2 = 1.36; for EA(M1)–FMMA(M2), r1 = 0.36 and r2 = 3.03. The Q and e values of FMMA determined from copolymerization with St were 0.97 and 0.55, respectively. Terpolymerization of a MMA–FMMA–EA system based on the Alfrey–Goldfinger equations was studied. This is a typical terpolymerization system in which reactivities of the monomers obey the Qe scheme. Comparing the results obtained here with those previously reported for other monomers, we concluded that FMMA is one of the most highly reactive monomers among alkyl methacrylates.  相似文献   

2.
The polymerization of trimethylvinylgermane (TMGeV) with the use of γ-ray, radical, and ionic initiator was attempted, but homopolymer was not obtained. This monomer did not undergo polymerization by itself, but polymerized with high concentration of n-BuLi. Copolymerization of TMGeV with styrene (St) and methyl methacrylate (MMA) was carried out by using radical initiator. From the results obtained by the copolymerization, monomer reactivity ratios and Qe values were obtained as follows: for the system St(M1)–TMGeV (M2), r1 = 24.4, r2 = 0.009, Q2, = 0.0049, e2 = 0.43; for the system MMA (M1)–TMGeV (M2), r1 = 19.98, r2 = 0.05; Q2 = 0.037, e2 = 0.43., The polymerizability of TMGeV is discussed on the basis of the Q and e values obtained.  相似文献   

3.
Investigations on free radical copolymerization of 1-vinyl naphthalene (1-VNph, monomerM 2) with styrene (St), methyl methacrylate (MMA) and acrylonitrile (AN) (monomersm 1) in bulk at 60°C with AIBN as initiator are presented. Relative reactivity ratios were calculated by the Kelen-Tüdös method yielding:r st=0.70 ±0.23 andr 1–VNph=2.02 ±0.40 for system St/1-VNph;r MMA=0.32 ±0.10 andr 1–VNph=0.57 ±0.07 for system MMA/1-VNph andr AN=0.11 ±0.03 andr 1–VNph=0.45 ±0.09 for system AN/1-VNph.Q, e values for 1-VNph according to Alfrey, Price scheme were calculated toQ 1–VNph=1.02,e 1VNph=–0.62.  相似文献   

4.
The monomer reactivity ratios for the radical copolymerization of crotononitrile (CN), methyl crotonate (MC), and n-propenyl methyl ketone (PMK) with styrene (St) were measured at 60°C. in benzene and little penultimate unit effect was shown for these systems. The values obtained were: St–CN, r1 = 24.0, r2 = 0; St–MC, r1 = 26.0, r2 = 0.01; St–PMK, r1 = 13.7, r2 = 0.01. The rate of copolymerization and the viscosity of the copolymer decreased markedly as the molar fraction of the crotonyl compound in the monomer mixture increased. The Q–e values were also calculated to be as follows: CN, e = 1.13, Q = 0.009; MC, e = 0.36, Q = 0.015; PMK, e = 0.61, Q = 0.024. A linear relationship was obtained between the e values of the crotonyl compounds and their Hammett constants σm.  相似文献   

5.
Acrolein was copolymerized by radical initiation in aqueous solutions with sodium p-styrenesulfonate and acrylic acid, respectively, in the pH range of 3–7. The reactivities were shown to be pH-dependent. For the acrolein (M1)–sodium p-styrenesulfonate (M2) pair, r1 = 0.33 ± 0.15 and r2 = 0.32 ± 0.05 at pH 3; r1 = 0.23 ± 0.12 and r2 = 0.05 ± 0.03 at pH 5; r1 = 0.26 ± 0.03 and r2 = 0.025 ± 0.025 at pH 7. For the acrolein (M1)–acrylic acid (M2) pair, r1 = 0.50 ± 0.30 and r2 = 1.15 ± 0.2 at pH 3; r1 = 2.40 ± 0.50 and r2 = 0.05 ± 0.05 at pH 5; r1 = 6.70 ± 3.00 and r2 = 0.00 at pH 7. For acrolein, the new values of Q = 1.6 and e = 1.2 have been calculated. For sodium p-styrenesulfonate, the values Q = 0.76 and e = ?0.26 at pH 3, Q = 0.51 and e = ?0.87 at pH 5, Q = 0.39 and e = ?1.00 at pH 7 were obtained; and for acrylic acid, the values Q = 1.27 and e = 0.50 at pH 3, Q = 0.11 and e = ?0.22 at pH 5 were derived. The changes in reactivity are explained on the basis of inductive and resonance effects.  相似文献   

6.
Optically active mono-l-menthyl itaconate (MMI) was prepared from ita-conic acid and l-menthol. MMI was polymerized in bulk at 80°C to give a chiral homopolymer having -49.5° specific rotation. MMI (M1 was copolymerized with styrene (ST, M2), methyl methacrylate (MMA, M2), and N-cyclohexylmaleimide (CHMI, M2) by using 2,2′-azobisisobutyronitrile (AIBN) as the radical initiator and benzene as the polymerization solvent at 50°C. The monomer reactivity ratios (r1, r2) and Alfrey-Price Q, e values were determined to be r1 = 0.28, r2 = 0.32, Q1 = 0.90, and e1 = 0.75 in MMI-ST; r1 = 0.09 and r2 = 0.51 in MMI-MMA; and r1 = 0.78 and r2 = 0.39 in MMI-CHMI. The chiroptical properties of the polymers were investigated.  相似文献   

7.
The copolymerization of vinylhydroquinone (VHQ) and vinyl monomers, e.g., methyl methacrylate (MMA), 4-vinyl-pyridine (4VP), acrylamide (AA), and vinyl acetate (VAc), by tri-n-butylborane (TBB) was investigated in cyclohexanone at 30°C under nitrogen. VHQ is assumed to copolymerize with MMA, 4VP, and AA by vinyl polymerization. The following monomer reactivity ratios were obtained (VHQ = M2): for MMA/VHQ/TBB, r1 = 0.62, r2 = 0.17; for 4VP/VHQ/TBB, r1 = 0.57, r2 = 0.05; for AA/VHQ/TBB, r1 = 0.35, r2 = 0.08. The Q and e values of VHQ were estimated on the basis of these reactivity ratios as Q = 1.4 and e = ?;1.1, which are similar to those of styrene. This suggests that VHQ behaves like styrene rather than as an inhibitor in the TBB-initiated copolymerization. No homopolymerization was observed either under nitrogen or in the presence of oxygen. The reaction mechanism is discussed.  相似文献   

8.
Vinyl mercaptobenzazoles [thiazole (VMBT), oxazole (VMBO), and imidazole (VMBI)] were prepared through dehydrochlorination of the respective β-chloroethyl mercaptobenzazoles. These monomers were found to undergo vinyl polymerization in the presence of light or radical initiator, α,α'-azobisisobutyonitrile, to give relatively high molecular weight homopolymers. From the results of radical copolymerizations of these monomers with various monomers, the copolymerization parameters were determined as follows: VMBT(M2): r1 styrene(M1): r1 = 2.12 ± 0.09, r2 = 0.336 ± 0.028, Q2 = 0.75, ez = ?1.38; VMBO(M2)-styrene(M1): r1 = 2.61 ± 0.13, r2 = 0.274 ± 0.03, Q2 = 0.61, e2 = ?1.38; VBMI(M2)-styrene(M1) r1 =4.0, r2 = 0.2, Q2 = 0.37, e2 = ?1.17. The polymerization reactivities of these monomers obtained from these parameters were compared with those of other vinyl sulfide monomers and discussed.  相似文献   

9.
Copolymers of 2-hydroxyethyl acrylate, hydroxypropyl acrylate, and 2(1-aziridinyl)-ethyl methacrylate (M2) with styrene (M1) were prepared in benzene solution at 60°C. Benzoyl peroxide, 0.1–0.2 mole-%, was used as initiator. Copolymer samples with the molar concentrations of M2 feed ranging from 0.10 to 0.85 were used to determine the reactivity ratios. Elemental analysis and nuclear magnetic resonance spectroscopy (NMR) were used to determine copolymer compositions. There was a solubility problem when the latter technique was applied. When samples which were completely soluble were analyzed, the results obtained from NMR and elemental analysis were in excellent agreement. The monomer reactivity ratios and the corresponding parameters for the copolymerization of (M1) with 2-hydroxyethyl acrylate are: r1 = 0.38 ± 0.02, r2 = 0.34 ± 0.03; Q2 = 0.85, e2 = 0.64; with hydroxypropyl acrylate are: r1 = 0.45 ± 0.03, r2 = 0.36 ± 0.03; Q2 = 0.75, e2 = 0.56; with 2(1-aziridinyl)ethyl methacrylate are: r1 = 0.53 ± 0.02, r2 = 0.63 ± 0.04; Q2 = 0.82, e2 = 0.25.  相似文献   

10.
The polymerization of polar monomers such as methyl methacrylate (MMA), methyl acrylate (MA), methacrylonitrile (MAN), and acrylonitrile (AN) was carried out with gadolinium-based Ziegler–Natta catalysts [Gd(OCOCCl3)3-(i-Bu)3Al-Et2AlCl] in hexane at 50°C under N2 to elucidate the effect of the monomer's HOMO(highest occupied moleculor orbital) and LUMO (lowest unoccupied molecular orbital) levels on the polymerizability. In the case of homopolymerization, all monomers were found to polymerize and the order of relative polymerizability was as follows: MM > MA > MAN > AN. On the other hand, the result of copolymerization of St with MMA shows that the values of the monomer reactivity ratios are r1 = 0.06 and r2 = 1.98 for St(M1)/MMA(M2). The monomer reactivity ratios of styrene (St), p-methoxystyrene (PMOS), p-methylstyrene (PMS), and p-chlorostyrene (PCS) evaluated as r1 = 0.55 and r2 = 1.07 for St(M1)/PMOS(M2), r1 = 0.38 and r2 = 0.51 for St(M1)/PMS(M2), and r1 = 0.72 and r2 = 1.25 for St(M1)/PCS(M2) were compared with those for St(M1)/MMA(M2). The copolymerization behavior is apparently different from the titanium-based Ziegler—Natta catalyst, regarding a larger monomer reactivity ratio of PCS. The lower LUMO level of PCS and MMA may enhance a back-donation process from the metal catalyst, therefore resulting in high polymerizability. These results are discussed on the basis of the energy level of the gadolinium catalyst and the HOMO and LUMO levels of the monomers. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2591–2597, 1997  相似文献   

11.
Abstract

Radical homopolymerization of N-[4-N′-(α-methylbenzyl)-aminocarbonylphenyl]maleimide ((S)-MBCP) was carried out at 50 and 70°C for 24 h to give optically active polymers ([α]25 D = 159.8 to 163.4°). Radical copolymerizations of (S)-MBCP (M1) were performed with styrene (ST, M2, methyl methacrylate (MMA, M2) in THF at 50°C. The monomer reactivity ratios (r 1, r 2) and the Alfrey-Price Q, e values were determined as follows: r 1 = 0.32, r 2= 0.14, Q 1 = 1.74, e 1 = 0.96 in the (S)-MBCP-ST system; r 1 = 0.54, r 2 = 0.93, Q 1 = 1.11, e 1 = 1.23 in the (S)-MBCP-MMA system. Chiroptical properties of the polymers and the copolymers were also investigated, and asymmetric induction into the copolymer main chain is discussed.  相似文献   

12.
A new type of optically active N-(L-menthylcarboxylatomethyl)maleimide (MGMI) was synthesized from maleic anhydride, glycine, and L-menthol. Radical homopolymerization of MGMI was performed at 50°C for 24 h to give optically active polymer having [α]D = -57°. Radical copolymerizations of MGMI (M 1) were performed with styrene (ST, M 2), methyl methacrylate (MMA, M 2) in benzene at 50°C. From the results, the monomer reactivity ratios (r 1, r 2) and the Alfrey-Price Q, e values were determined as follows: r 1 = 0.16, r 2 = 0.006 for the MGMI-ST system; r 1 = 0.15, r 2 = 1.65 for the MGMI-MMA system, and Q 1 = 0.72, e 1 = 1.59 calculated from the MGMI-MMA system. Anionic homopolymerizations of MGMI were also carried out. Chiroptical properties of the polymers were investigated.  相似文献   

13.
Radical polymerization of N,N,N′,N′-tetraalkylfumaramides (TRFAm) bearing methyl, ethyl, n-propyl, isopropyl, and isobutyl groups as N-substituents (TMFAm, TEFAm, TnPFAm, TIPFAm, and TIBFAm, respectively) was investigated. In the polymerization of TEFAm initiated with 1,1′-azobiscyclohexane-1-carbonitrile (ACN) in benzene, the polymerization rate (Rp) was expressed as follows: Rp = k [ACN]0.28 [TEFAm]1.26, and the overall activation energy was 102.1 kJ/mol. The introduction of a bulky alkyl group into N-substituent of TRFAm decreased the Rp in the following order: TMFAm > TEFAm > TnPFAm > TIBFAm > TIPFAm ~ 0. The relative reactivities of these monomers were also investigated in radical copolymerization with styrene (St) and methyl methacrylate (MMA). In copolymerization of TRFAm (M2) with St (M1), monomer reactivity ratios were determined to be r1 = 1.07 and r2 = 0.20 for St–TMFAm, and r1 = 1.88 and r2 = 0.11 for St–TEFAm, from which Q2 and e2 values were estimated to be 0.35 and 0.44 for TMFAm, and 0.19 and 0.47 for TEFAm, respectively. The other TRFAm were also copolymerized with St, but copolymerization with MMA gave polymers containing a small amount of TRFAm units. The polymer from TRFAm consists of a less-flexible poly(N,N-dialkylaminocarbonylmethylene) structure. The solubility and thermal property of the polymers were also investigated.  相似文献   

14.
Bulk radical copolymerization of methyl acrylate (MeA, M1) with styrene (St, M2) in presence and absence of ZnCl2 as complexing agent was studied. 1H-NMR spectra were used to establish copolymer composition and sequence distribution. The methoxy group signal was observed to be split due to pentads, but the analysis of sequence distribution is possible only at triad level. Both composition and sequence distribution data confirmed that bulk radical copolymerization respects quite well the terminal addition model; the values of r1 = 0.14 ± 0.02 (from composition data) and r1 = 0.25 ± 0.03 (from sequence distribution data) and r2 = 0.83 ± 0.10 (from composition data) were found. The presence of ZnCl2 increases the probability of alternating addition, e.g., for [ZnCl2]/[MeA] = 0.2, r1 = 0.03 ± 0.02 and r2 = 0.17 ± 0.03. The radical copolymer obtained in bulk in the absence of ZnCl2 presents a coisotactic configuration with σ = 0.75 ± 0.03, but the presence of the complexing agent reduces the probability of coisotactic addition, e.g., for [ZnCl2]/[MeA] = 0.2, σ = 0.52 ± 0.03.  相似文献   

15.
Optically active N-α-methylbenzylmaleimide (MBZMI) was prepared with maleic anhydride and d-(+)-α-methylbenzylamine. The polymerizations of MBZMI were carried out with α,α′-azobisisobutyronitrile (AIBN) and n-butyllithium (n-BuLi) in tetrahydrofuran (THF). The specific rotations of the polymers obtained by AIBN and n-BuLi initiator were +11.1° to +13.0° and ?57.0° to ?89.2°, respectively. The weight-average molecular weights (Mw) for the polymers were between 4200 and 8000. Furthermore, MBZMI was copolymerized with styrene (ST) and methyl methacrylate (MMA) with AIBN in THF at 50°C to obtain optically active copolymers. The monomer reactivity ratios of MBZMI (M1) with ST (M2) were obtained as r1 = 0.027, r2 = 0.094 in the MBZMI–ST and r1 = 0.15, r2 = 1.54 in the MBZMI–MMA system. The Q-e values for MBZMI were Q1 = 0.78, e1 = 1.62. All the polymers and copolymers were found to show a weakly negative circular dichroism (CD) peak at about 250 nm and a strongly positive CD peak at about 220 nm.  相似文献   

16.
Radical copolymerization of styrene (St, M1) with acrylonitrile (AN, M2) has been carried out using azobisisobutylonitrile as an initiator in benzene, dimethylsulfoxide, acetonitrile, and ethanol at 60 and 80°C. Good linear correlationships were obtained by plotting the values of log r1, log r2, Q2, and e2 against those of vC[dbnd]N and vC[dbnd]C determined in the solvents: the increase in the interaction between AN and the solvent was found to decrease the values of log r1 and e2 but to increase those of log r2 and Q2. The results are discussed in terms of the solvation both in the ground state and in the transition state.  相似文献   

17.
Abstract

2,4,5-Tribromostyrene (TBSt) was copolymerized with methyl acrylate (MA) or methyl methacrylate (MMA) in a toluene solution using 2,2′-azobisisobutyronitrile as free radical initiator. The copolymerization reactivity ratios were found to be for the system TBSt / MA r1= 7.4 ± 1.2 (TBSt) and r2= 0.1 ± 1.4 (MA) and for the system TBSt / MMA r1 = 1.8 ± 0.2 (TBSt) and r2 = 0.1 ± 0.2 (MMA). The e and Q values were also calculated. The initial rate of copolymerization, as well as molecular weight of the obtained copolymers for both system linearly increase as the content of TBSt in the monomer mixture increases. Similar behavior has also been established for the course of the copolymerization reactions to high conversions. The resulting copolymers rapidly decompose at temperatures 20–800°C above the decomposition of corresponding (metha)crylate hompolymers. However, the glass transition temperature increases markedly with increasing TBS content.  相似文献   

18.
Radical copolymerization of methyl vinyl ketone (MVK, M1) with acrylamide (AAm) and its derivatives, such as methacrylamide (MAAm) and N,N′ -dimethylacrylamide (DMAAm), was carried out in dioxane or ethanol using α,α - azobisisobutylonitrile as the initiator at 60°C under vacuum. The monomer reactivity ratios found in dioxane were as follows: ri = 1.06, r2 = 6.41 for the MVK-AAm system; r1 = 0.29, r2 = 3.05 for the MVK-MAAm system; and r1 = 0.95, r2 = 0.26 for the MVK-DMAAm system. The n and r2 values obtained in ethanol were as follows: r1 = 0.88, r2 = 1.18 for the MVK-AAm system; and r1 = 0.37, r2 = 2.04 for the MVK-MAAm system. Q2 and e2 values of AAm derivatives in dioxane were estimated to be 3.03 and 1.04 for MAAm and 2.15 and 1.11 for DMAAm, respectively. The Q2 and e2 values of MAAm in ethanol were estimated to be 2.67 and 1.21, respectively. Based on these results, the alternating copolymerizability depends on the interaction of monomer-monomer, and the strong solvent effect depends on the radical copolymerization of the AAm derivatives.  相似文献   

19.
The kinetics of α-methylene-γ-butyrolactone (α-MBL) homopolymerization was investigated in N,N-dimethylformamide (DMF) with azobis(isobutyronitrile) as initiator. The rate of polymerization (Rp) was expresed by Rp = k[AIBN]0.54[α-MBL]1.1 and the overall activation energy was calculated as 76.1 kJ/mol. Kinetic constants for α-MBL polymerization were obtained as follows: kp/kt1/2 = 0.161 L1/2 mol?1/2·s?1/2; 2fkd = 2.18 × 10?5 s?1. The relative reactivity ratios of α-MBL(M2) copolymerization with styrene (r1 = 0.14, r2 = 0.87) were obtained. Applying the Qe scheme led to Q = 2.2 and e = 0.65. These Q and e values for α-MBL are higher than those for MMA  相似文献   

20.
Polymerization of 2‐methacryloyloxyethyl phosphorylcholine (MPC) was kinetically investigated in ethanol using dimethyl 2,2′‐azobisisobutyrate (MAIB) as initiator. The overall activation energy of the homogeneous polymerization was calculated to be 71 kJ/mol. The polymerization rate (Rp) was expressed by Rp = k[MAIB]0.54±0.05 [MPC]1.8±0.1. The higher dependence of Rp on the monomer concentration comes from acceleration of propagation due to monomer aggregation and also from retardation of termination due to viscosity effect of the MPC monomer. Rate constants of propagation (kp) and termination (kt) of MPC were estimated by means of ESR to be kp = 180 L/mol · s and kt = 2.8 × 104 L/mol · s at 60 °C, respectively. Because of much slower termination, Rp of MPC in ethanol was found at 60 °C to be 8 times that of methyl methacrylate (MMA) in benzene, though the different solvents were used for MPC and MMA. Polymerization of MPC with MAIB in ethanol was accelerated by the presence of water and retarded by the presence of benzene or acetonitrile. Poly(MPC) showed a peculiar solubility behavior; although poly(MPC) was highly soluble in ethanol and in water, it was insoluble in aqueous ethanol of water content of 7.4–39.8 vol %. The radical copolymerization of MPC (M1) and styrene (St) (M2) in ethanol at 50 °C gave the following copolymerization parameters similar to those of the copolymerization of MMA and St; r1 = 0.39, r2 = 0.46, Q1 = 0.76, and e1 = +0.51. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 509–515, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号