首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Large-amplitude Rossby waves riding on a background flow with a weak shear can be calculated up to a critical amplitude for which the meridional velocity, in a frame traveling with the wave, approaches zero at some point. Here we consider waves with an amplitude slightly greater than the critical amplitude by incorporating a region of recirculating fluid (vortex core) near this critical point. The effect of the vortex core is to introduce an extra nonlinear term into the equation for the wave amplitude proportional to the 3/2 power of the difference between the wave amplitude and the critical amplitude. The main effect due to the vortex core is a broadening of the wave profile. Furthermore, we show that the vortex core family has a limiting amplitude, with the limiting amplitude corresponding to a semi-infinite bore.  相似文献   

2.
本文研究入射波系在液体中的半无限弹性管梁的开口端的反射和辐射问题,此波系由管梁上的挠曲波和管内、管外液体中相应的表面波(声波)所组成.利用Fourier变换,将这个半无限问题严格地归结为求解Wiener-Hopf型方程.然后将液体和管梁的密度比作为小参数,用摄动法求近似解.文章着重研究了反射系数的计算,还给出了远场的辐射型式曲线.  相似文献   

3.
In the linear inviscid theory of shear flow stability, the eigenvalue problem for a neutral or weakly amplified mode revolves around possible discontinuities in the eigenfunction as the singular critical point is crossed. Extensions of the linear normal mode approach to include nonlinearity and/or wave packets lead to amplitude evolution equations where, again, critical point singularities are an issue because the coefficients of the amplitude equations generally involve singular integrals. In the past, viscosity, nonlinearity, or time dependence has been introduced in a critical layer centered upon the singular point to resolve these integrals. The form of the amplitude evolution equation is greatly influenced by which choice is made. In this paper, a new approach is proposed in which wave packet effects are dominant in the critical layer and it is argued that in many applications this is the appropriate choice. The theory is applied to two-dimensional wave propagation in homogeneous shear flows and also to stratified shear flows. Other generalizations are indicated.  相似文献   

4.
The influence of surfactant on water wave packets is investigated. An envelope equation for a slowly varying wave packet in the potential flow equations with variable Bond number is derived. The properties of this equation depend on the relative phases of the wave packet and the distribution of surface tension. We observe that small variations in the Bond number may change the focusing nature of the envelope equation from that of the constant Bond number problem. Variations in Bond number can thus suppress, or incite, the Benjamin‐Feir instability. The existence of envelope solitary waves depends in a similar way on the Bond number variation. The envelope equation is also derived in a larger class of models.  相似文献   

5.
The effect of applying a Kutta-Joukowski condition at the edgeof a semi-infinite plane which is generating noise in a turbulentfluid at low Mach numbers is examined. It is found that in somecircumstances the noise is increased and the intensity of thedistant sound field may depend upon the third power of a typicalfluid velocity. When the sound field is convected the orders of magnitude ofthe acoustic far field are the same whether or not the Kutta-Joukowskicondition is applied, provided that the point of observationis not near the wake. Near the wake there is an acoustic "surface"wave which is much stronger than the distant field elsewhere.  相似文献   

6.
A weakly nonlinear evolution of two dimensional wave packets on the surface of a magnetic fluid in the presence of an uniform magnetic field is presented, taking into account the surface tension. The method used is that of multiple scales to derive two partial differential equations. These differential equations can be combined to yield two alternate nonlinear Schrödinger equations. The first equation is valid near the cutoff wavenumber while the second equation is used to show that stability of uniform wave trains depends on the wavenumber, the density, the surface tension and the magnetic field. At the critical point, a generalized formulation of the evolution equation governing the amplitude is developed which leads to the nonlinear Klein-Gordon equation. From the latter equation, the various stability crteria are obtained.  相似文献   

7.
The weakly nonlinear theory of baroclinic wave trains and wave packets is examined by the use of systematic expansion procedures in appropriate powers of a small parameter measuring the supercriticality according to linear theory; well-known multiple scaling techniques are employed. Crucial importance is ascribed to the magnitude of parameters measuring dissipation and dispersion relative to each other and to the supercriticality, and equations describing the slow evolution in space and time of the wave amplitude are established for a range of parameter values. For vanishingly small dissipation the wave train equations have straightforward oscillatory solutions, dependent on initial conditions, and for large dissipation steady equilibration, independent of initial conditions, is predicted. For moderately small dissipation, however, a wide variety of behaviors is possible—including steady equilibration, single and multiple periodicity, and aperiodicity—in the solutions of the equations, which are recognizable as generalisations of the well-known Lorenz attractor equations. Equations describing the evolution of wave packets take a variety of forms; for vanishingly small dissipation or for large dissipation, they are essentially parabolic and of nonlinear Schrödinger type, whilst for moderate dissipation they are of Lorenz type, modified by spatial variations. Solutions of a number of these equations are discussed and compared, where appropriate, with experimental results.  相似文献   

8.
The propagation of an internal wave train in a stratified shear flow is investigated for a Boussinesq fluid in a horizontal channel. Linear effects are primarily reflected in the dispersion relation for the various modes. The phenomenon of Eckart resonance occurs for more realistic stratification profiles. The evolution of nonlinear internal wave packets is studied through a systematic perturbation analysis. A nonlinear Schrodinger equation for the envelope of the internal wave train is derived. Depending on the relative sign of the dispersive and nonlinear terms, a wave train may disperse or form an envelope soliton. The analysis demonstrates the existence of two types of critical layers: one the ordinary critical point where ū=c, while the other occurs where ū=cg. In order to calculate the coefficients of the nonlinear Schrodinger equation a numerical code has been developed which computes the second-harmonic and induced mean motions. The existence of these envelope solitons and their dependence on environmental conditions are discussed.  相似文献   

9.
Complex analytical structure of Stokes wave for two‐dimensional potential flow of the ideal incompressible fluid with free surface and infinite depth is analyzed. Stokes wave is the fully nonlinear periodic gravity wave prop agating with the constant velocity. Simulations with the quadruple (32 digits) and variable precisions (more than 200 digits) are performed to find Stokes wave with high accuracy and study the Stokes wave approaching its limiting form with radians angle on the crest. A conformal map is used that maps a free fluid surface of Stokes wave into the real line with fluid domain mapped into the lower complex half‐plane. The Stokes wave is fully characterized by the complex singularities in the upper complex half‐plane. These singularities are addressed by rational (Padé) interpolation of Stokes wave in the complex plane. Convergence of Padé approximation to the density of complex poles with the increase in the numerical precision and subsequent increase in the number of approximating poles reveals that the only singularities of Stokes wave are branch points connected by branch cuts. The converging densities are the jumps across the branch cuts. There is one square‐root branch point per horizontal spatial period λ of Stokes wave located at the distance from the real line. The increase in the scaled wave height from the linear limit to the critical value marks the transition from the limit of almost linear wave to a strongly nonlinear limiting Stokes wave (also called the Stokes wave of the greatest height). Here, H is the wave height from the crest to the trough in physical variables. The limiting Stokes wave emerges as the singularity reaches the fluid surface. Tables of Padé approximation for Stokes waves of different heights are provided. These tables allow to recover the Stokes wave with the relative accuracy of at least 10?26. The number of poles in tables increases from a few for near‐linear Stokes wave up to about hundred poles to highly nonlinear Stokes wave with   相似文献   

10.
The effects of undulatory parallel walls and a normal magnetic field on the stability of weakly nonlinear waves at a horizontal interface of two magnetic inviscid fluids are investigated. We assumed that the walls have a weak sinusoidal undulation. The frequency of the main waves is similar to a problem having smooth boundaries. The breaker surface tension and the breaker magnetic field are obtained. The stability analysis concerns the interaction of two propagation wave numbers satisfying the resonance condition imposed by the periodicity of the sinusoidal walls. The first-resonance case occurs whenever the wall wave number is nearly equal to twice the propagation wave number while the second-resonance case occurs whenever the two kinds of wave numbers are nearly equal. When the wave number of the undulation is far from the propagation wave number, the sinusoidal walls have the same effect of the smooth walls on the stability criterion. The stability conditions and the transition curves in the two resonance cases are treated away from the critical state. The existence conditions and stability of Stokes waves near the critical state are discussed. Numerous illustrations and graphs amplify the work.  相似文献   

11.
The plane scalar problem on the refraction of a high-frequency wave, given by its ray expansion, from a curvilinear interface of two media is considered. It is assumed that the velocity in the medium where the refracted wave propagates is larger than the velocity in the medium where the incident wave propagates. It is also assumed that, on the interface, there is a point on one side of which the ordinary refraction of the wave holds and on the other side of which the complete internal reflection of the wave occurs. An analytic expression of the wave field near this limiting point is found. Bibliography: 8 titles.  相似文献   

12.
We introduce Gaussian wave packets in pursuit of representations of functions, in which the representation is invariant under translation, modulation, scale, rotation and anisotropic dilation. Properties of both continuous and discrete representations are discussed. For the discrete (two-dimensional) case, we develop fast algorithms for the application of the analysis and synthesis operators. A main objective for using Gaussian wave packets is to obtain sparse approximations of functions. However, due to the many invariance properties, the representations will have a high degree of redundancy. Therefore, we also introduce sparse methods for highly redundant representations, that employ some of the analytic properties of Gaussian wave packet for gaining computational efficiency.  相似文献   

13.
Within the framework of the triple-deck theory, the effect of surface elasticity on three-dimensional packets of Tollmien-Schlichting waves generated by acoustic disturbances induced near the boundary layer at transonic free-stream velocities is investigated. It is shown that the elasticity of the surface considerably weakens the most unstable oblique waves but does not change the characteristic horseshoe shape of wave packets with two disturbance peaks propagating at an angle to the incoming flow.  相似文献   

14.
A linearized equation for the propagation of surface gravitational waves in a layer of magnetized liquid of finite depth is examined. The liquid is assumed to be inviscid, incompressible, and to possess magnetization properties in the absence of electrical conductivity, while the motion is assumed to be irrotational. Travelling wave solutions are obtained. The dependences of the phase and group velocities of the magnetic liquid on the magnetic parameters are studied. It is shown that for some values of the magnetic parameters there is an interval of short wavelengths for which the group velocity is negative, which indicates that the wave energy propagates in the negative direction.  相似文献   

15.
A linear analysis of the Rayleigh–Taylor (R–T) instability on a spherical viscous liquid droplet in a gas stream is presented. Different from the most previous studies in which the external acceleration is usually assumed to be radial, the present study considers a unidirectional acceleration acting on a spherical droplet with arbitrary initial disturbances and therefore can provide insights into the influence of R–T instability on the atomization of spherical droplets. A general recursion relation coupling different spherical modes is derived and two physically prevalent limiting cases are discussed. In the limiting case of inviscid droplet, the critical Bond numbers to excite the instability and the growth rates for a given Bond number are obtained by solving two eigenvalue problems. In the limiting case of large droplet acceleration, different spherical modes are asymptotically decoupled and an explicit dispersion relation is derived. For given Bond number and Ohnesorge numbers, the critical size of stable droplet, the most-unstable mode and its corresponding growth rate are determined theoretically.  相似文献   

16.
A new nonlinear model of the propagation of wave packets in the system “liquid layer with solid bottom–liquid layer with free surface” is considered. With the use of the method of multiple-scale expansions, the first three linear approximations of the nonlinear problem are obtained. Solutions of problem of the first approximation are constructed and analyzed in detail. It is shown that there exist internal and surface components of the wave field, and their interaction is analyzed.  相似文献   

17.
A numerical-analytic method employing series over basis systems of propagating and edge standing normal waves is used to study dynamic edge effects in the scattering of the lowest order travelling wave at the contact surface between two semi-infinite components of a prismatic waveguide with a rectangular cross section made of single crystals of Rochelle salt and sodium ammonium selenate dihydrate.  相似文献   

18.
Wave packets emerged in recent years as a very useful tool in the study of nonlinear wave equations. In this article we introduce a phase space transform adapted to the geometry of wave packets, and use it to characterize and study the associated classes of pseudodifferential and Fourier integral operators.  相似文献   

19.
An elastic plate is located on the surface of a liquid, in continuous contact with it and rigidly clamped in a support along a certain straight line. The orthogonal incidence of a small amplitude flexural-gravitational wave on the support is considered. Exact expressions are obtained for the wave field in the fluid and the flexural field in the plate. The transmission coefficient of the incident flexural-gravitational wave through the support and its reflection coefficient from it are determined. The forces which arise in the support are found. The investigation is carried out for liquids of finite and infinite depth. The effect of the depth of the liquid on the wave processes is indicated. The liquid is assumed to be inviscid and its friction on the bottom and the lower surface of the plate in the neighbourhood of the support is therefore ignored.  相似文献   

20.
The seepage under a Zhukovskii sheet pile through a layer of soil underlain by a highly permeable pressurized horizon is considered. The left semi-infinite part of the roof of this horizon is simulated by an impermeable foundation. The flow when the velocity on the edges of the sheet pile is equal to infinity and, on the two water permeable parts of the boundary of the domain of motion, the flow rate takes extremal values, is investigated. The limiting cases, associated with the absence of both a backwater and an impermeable inclusion, are mentioned. The problem of seepage from a foundation pit formed by two Zhukovskii sheet piles is solved within the limits of a flow with a highly permeable pressurized stratum lying below. In the case when there is no infiltration onto the free surface, a solution of the well-known Vedernikov problem is obtained. A contact scheme, arising when there are no such indicated critical points, is considered; it is described outside the scope of the constraints imposed on the unknown conforming mapping parameters ensuring the realization of the basic mathematical model. Solutions are given for two schemes of motion in a semi-inverse formulation. The classical Zhukovskii problem is the limiting case of one of them. The special features of such models are mentioned. The Polubarinova-Kochina method is used to study all the above-mentioned flows. This method enables exact analytical representations of the elements of the motion to be obtained. The results of numerical calculations and an analysis of the effect of all the physical factors on the seepage characteristics are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号