首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For fixed k ≥ 3, let Ek(x) denote the error term of the sum , where 1. It is proved that if the Riemann hypothesis is true, then , . A short interval result is also obtained.  相似文献   

2.
Aiming at a simultaneous extension of Khintchine(X,X,m,T)(X,\mathcal{X},\mu,T) and a set A ? XA\in\mathcal{X} of positive measure, the set of integers n such that A T^2nA T^knA)(A)^k+1-\mu(A{\cap} T^{n}A{\cap} T^{2n}A{\cap} \ldots{\cap} T^{kn}A)>\mu(A)^{k+1}-\epsilon is syndetic. The size of this set, surprisingly enough, depends on the length (k+1) of the arithmetic progression under consideration. In an ergodic system, for k=2 and k=3, this set is syndetic, while for kòf(x)f(Tnx)f(T2nx)? f(Tknx)  dm(x)\int{f(x)f(T^{n}x)f(T^{2n}x){\ldots} f(T^{kn}x) \,d\mu(x)} , where k and n are positive integers and f is a bounded measurable function. We also derive combinatorial consequences of these results, for example showing that for a set of integers E with upper Banach density d*(E)>0 and for all {n ? \mathbbZ\colon d*(E?(E+n)?(E+2n)?(E+3n)) > d*(E)4-e}\big\{n\in\mathbb{Z}{\colon} d^*\big(E\cap(E+n)\cap(E+2n)\cap(E+3n)\big) > d^*(E)^4-\epsilon\big\}  相似文献   

3.
For log\frac1+?52 £ l* £ l* < ¥{\rm log}\frac{1+\sqrt{5}}{2}\leq \lambda_\ast \leq \lambda^\ast < \infty , let E*, λ*) be the set {x ? [0,1): liminfn ? ¥\fraclogqn(x)n=l*, limsupn ? ¥\fraclogqn(x)n=l*}. \left\{x\in [0,1):\ \mathop{\lim\inf}_{n \rightarrow \infty}\frac{\log q_n(x)}{n}=\lambda_{\ast}, \mathop{\lim\sup}_{n \rightarrow \infty}\frac{\log q_n(x)}{n}=\lambda^{\ast}\right\}. It has been proved in [1] and [3] that E*, λ*) is an uncountable set. In the present paper, we strengthen this result by showing that dimE(l*, l*) 3 \fracl* -log\frac1+?522l*\dim E(\lambda_{\ast}, \lambda^{\ast}) \ge \frac{\lambda_{\ast} -\log \frac{1+\sqrt{5}}{2}}{2\lambda^{\ast}}  相似文献   

4.
Let Λ(n) be the von Mangoldt function, x real and y small compared with x. This paper gives a non-trivial estimate on the exponential sum over primes in short intervals S2(x,y;a)=?x < nx+yL(n)e(n2 a)S_2(x,y;{\alpha})=\sum_{x < n \le x+y}\Lambda(n)e(n^2 {\alpha}) for all α ∈ [0,1] whenever x\frac23+eyxx^{\frac{2}{3}+{\varepsilon}}\le y \le x . This result is as good as what was previously derived from the Generalized Riemann Hypothesis.  相似文献   

5.
On the assumption of the truth of the Riemann hypothesis for the Riemann zeta function we construct a class of modified von-Mangoldt functions with slightly better mean value properties than the well known function L\Lambda . For every e ? (0,1/2)\varepsilon \in (0,1/2) there is a [(L)\tilde] : \Bbb N ? \Bbb C\tilde {\Lambda} : \Bbb N \to \Bbb C such that¶ i) [(L)\tilde] (n) = L (n) (1 + O(n-1/4  logn))\tilde {\Lambda} (n) = \Lambda (n) (1 + O(n^{-1/4\,} \log n)) and¶ii) ?n \leqq x [(L)\tilde] (n) (1- [(n)/(x)]) = [(x)/2] + O(x1/4+e) (x \geqq 2).\sum \limits_{n \leqq x} \tilde {\Lambda} (n) \left(1- {{n}\over{x}}\right) = {{x}\over{2}} + O(x^{1/4+\varepsilon }) (x \geqq 2).¶Unfortunately, this does not lead to an improved error term estimation for the unweighted sum ?n \leqq x [(L)\tilde] (n)\sum \limits_{n \leqq x} \tilde {\Lambda} (n), which would be of importance for the distance between consecutive primes.  相似文献   

6.
We prove that for any $ \varepsilon > 0 $ \varepsilon > 0 there is k (e) k (\varepsilon) such that for any prime p and any integer c there exist k \leqq k(e) k \leqq k(\varepsilon) pairwise distinct integers xi with 1 \leqq xi \leqq pe, i = 1, ?, k 1 \leqq x_{i} \leqq p^{\varepsilon}, i = 1, \ldots, k , and such that¶¶?i=1k [1/(xi)] o c    (mod p). \sum\limits_{i=1}^k {{1}\over{x_i}} \equiv c\quad (\mathrm{mod}\, p). ¶¶ This gives a positive answer to a question of Erdös and Graham.  相似文献   

7.
For fixed k3, let It is known that the asymptotic formula holds for some constant ck. Let Ek(x)=Rk(x)–ckx2/k. We cannot improve the exponent 1/k at present if we do not have further knowledge about the distribution of the zeros of the Riemann Zeta function (s). In this paper, we shall prove that if the Riemann Hypothesis (RH) is true, then Ek(x)=O(x4/15+), which improves the earlier exponent 5/18 due to Nowak. A mean square estimate of Ek(x) for k6 is also obtained, which implies that Ek(x)=(x1/k–1/k2) for k6 under RH.  相似文献   

8.
Given g { l\fracn2 g( lj x - kb ) }jezjezn ,where  lj \left\{ {\lambda ^{\frac{n}{2}} g\left( {\lambda _j x - kb} \right)} \right\}_{j\varepsilon zj\varepsilon z^n } ,where\;\lambda _j > 0 and b > 0. Sufficient conditions for the wavelet system to constitute a frame for L 2(R n ) are given. For a class of functions g{ ezrib( j,x ) g( x - lk ) }jezn ,kez\left\{ {e^{zrib\left( {j,x} \right)} g\left( {x - \lambda _k } \right)} \right\}_{j\varepsilon z^n ,k\varepsilon z} to be a frame.  相似文献   

9.
We study the family of divergence-type second-order parabolic equations we(x)\frac?u?t=div(a(x)we(x) ?u), x ? \mathbbRn{\omega_\varepsilon(x)\frac{\partial u}{\partial t}={\rm div}(a(x)\omega_\varepsilon(x) \nabla u), x \in \mathbb{R}^n} , with parameter ${\varepsilon >0 }${\varepsilon >0 } , where a(x) is uniformly elliptic matrix and we=1{\omega_\varepsilon=1} for x n  < 0 and we=e{\omega_\varepsilon=\varepsilon} for x n  > 0. We show that the fundamental solution obeys the Gaussian upper bound uniformly with respect to e{\varepsilon} .  相似文献   

10.
Let Hk\mathcal{H}_{k} denote the set {n∣2|n, n\not o 1 (mod p)n\not\equiv 1\ (\mathrm{mod}\ p) ∀ p>2 with p−1|k}. We prove that when X\frac1120(1-\frac12k) +e\leqq H\leqq XX^{\frac{11}{20}\left(1-\frac{1}{2k}\right) +\varepsilon}\leqq H\leqq X, almost all integers n ? \allowbreak Hk ?(X, X+H]n\in\allowbreak {\mathcal{H}_{k} \cap (X, X+H]} can be represented as the sum of a prime and a k-th power of prime for k≧3. Moreover, when X\frac1120(1-\frac1k) +e\leqq H\leqq XX^{\frac{11}{20}\left(1-\frac{1}{k}\right) +\varepsilon}\leqq H\leqq X, almost all integers n∈(X,X+H] can be represented as the sum of a prime and a k-th power of integer for k≧3.  相似文献   

11.
We shall present short proofs for type II (simultaneous) Hermite–Padé approximations of the generalized hypergeometric and q-hypergeometric series
F(t)=?n=0\frac?k=0n-1P(k)?k=0n-1Q(k)tn,       Fq(t)=?n=0\frac?k=0n-1P(qk)?k=0n-1Q(qk)tn,F(t)=\sum_{n=0}^{\infty}\frac{\prod_{k=0}^{n-1}P(k)}{\prod _{k=0}^{n-1}Q(k)}t^n,\qquad F_q(t)=\sum_{n=0}^{\infty}\frac{\prod_{k=0}^{n-1}P(q^k)}{\prod _{k=0}^{n-1}Q(q^k)}t^n,  相似文献   

12.
Let L be a finite distributive lattice and μ: L → ℝ+ a log-supermodular function. For functions k: L → ℝ+ let
Em (k;q)def ?x ? L k(x)m(x)qrank(x) ? \mathbbR+ [q] .E_\mu (k;q)^{\underline{\underline {def}} } \sum\limits_{x \in L} {k(x)\mu (x)q^{rank(x)} \in \mathbb{R}^ + [q]} .  相似文献   

13.
For each integer n l(n)=[(log n)/(log g(n))]\lambda(n)={{\rm log}\, n\over{\rm log}\, \gamma(n)} be the index of composition of n, where g(n)=?p|np\gamma(n)=\prod_{p\vert n}p . For convenience, we write ?xnx+?xl(n)\sum_{x\le n\le x+\sqrt{x}}\lambda(n) and ?nxl(n)\sum_{n\le x}\lambda(n) , as well as for ?xnx+?x1/l(n)\sum_{x\le n\le x+\sqrt{x}}1/\lambda(n) and ?nx1/l(n)\sum_{n\le x}1/\lambda(n) . Finally we study the sum of running over shifted primes.  相似文献   

14.
We present sharp Hessian estimates of the form D2 Se(t,x) £ g(t)I{D^2 S^\varepsilon(t,x)\leq g(t)I} for the solution of the viscous Hamilton–Jacobi equation
llSet+\frac12|DSe|2+V(x)-eDSe = 0    in  QT=(0,T]× \mathbb Rn,                                  Se(0,x) = S0(x)   in \mathbb Rn.\begin{array}{ll}S^\varepsilon_t+\frac{1}{2}|DS^\varepsilon|^2+V(x)-\varepsilon\Delta S^\varepsilon = 0\quad {\rm in} \, Q_T=(0,T]\times\, {\mathbb {R}^n}, \\ \qquad \qquad \qquad \qquad \quad \, S^\varepsilon(0,x) = S_0(x)\quad{\rm in}\, {\mathbb {R}^n}.\end{array}  相似文献   

15.
Abstract. For natural numbers n we inspect all factorizations n = ab of n with aba \le b in \Bbb N\Bbb N and denote by n=an bnn=a_n b_n the most quadratic one, i.e. such that bn - anb_n - a_n is minimal. Then the quotient k(n) : = an/bn\kappa (n) := a_n/b_n is a measure for the quadraticity of n. The best general estimate for k(n)\kappa (n) is of course very poor: 1/n £ k(n) £ 11/n \le \kappa (n)\le 1. But a Theorem of Hall and Tenenbaum [1, p. 29], implies(logn)-d-e £ k(n) £ (logn)-d(\log n)^{-\delta -\varepsilon } \le \kappa (n) \le (\log n)^{-\delta } on average, with d = 1 - (1+log2  2)/log2=0,08607 ?\delta = 1 - (1+\log _2 \,2)/\log 2=0,08607 \ldots and for every e > 0\varepsilon >0. Hence the natural numbers are fairly quadratic.¶k(n)\kappa (n) characterizes a specific optimal factorization of n. A quadraticity measure, which is more global with respect to the prime factorization of n, is k*(n): = ?1 £ ab, ab=n a/b\kappa ^*(n):= \textstyle\sum\limits \limits _{1\le a \le b, ab=n} a/b. We show k*(n) ~ \frac 12\kappa ^*(n) \sim \frac {1}{2} on average, and k*(n)=W(2\frac 12(1-e) log n/log 2n)\kappa ^*(n)=\Omega (2^{\frac {1}{2}(1-\varepsilon ) {\log}\, n/{\log} _2n})for every e > 0\varepsilon>0.  相似文献   

16.
Prime chains are sequences $p_{1}, \ldots , p_{k}Prime chains are sequences p1, ?, pkp_{1}, \ldots , p_{k} of primes for which pj+1 o 1{p_{j+1} \equiv 1} (mod p j ) for each j. We introduce three new methods for counting long prime chains. The first is used to show that N(x; p) = Oe(x1+e){N(x; p) = O_{\varepsilon}(x^{1+\varepsilon})}, where N(x; p) is the number of chains with p 1 = p and pkpx{p_k \leq p_x}. The second method is used to show that the number of prime chains ending at p is ≍ log p for most p. The third method produces the first nontrivial upper bounds on H(p), the length of the longest chain with p k = p, valid for almost all p. As a consequence, we also settle a conjecture of Erdős, Granville, Pomerance and Spiro from 1990. A probabilistic model of H(p), based on the theory of branching random walks, is introduced and analyzed. The model suggests that for most px{p \leq x}, H(p) stays very close to e log log x.  相似文献   

17.
We establish uniform estimates for order statistics: Given a sequence of independent identically distributed random variables ξ 1, … , ξ n and a vector of scalars x = (x 1, … , x n ), and 1 ≤ k ≤ n, we provide estimates for \mathbb E   k-min1 £ in |xixi|{\mathbb E \, \, k-{\rm min}_{1\leq i\leq n} |x_{i}\xi _{i}|} and \mathbb E k-max1 £ in|xixi|{\mathbb E\,k-{\rm max}_{1\leq i\leq n}|x_{i}\xi_{i}|} in terms of the values k and the Orlicz norm ||yx||M{\|y_x\|_M} of the vector y x  = (1/x 1, … , 1/x n ). Here M(t) is the appropriate Orlicz function associated with the distribution function of the random variable |ξ 1|, G(t) = \mathbb P ({ |x1| £ t}){G(t) =\mathbb P \left(\left\{ |\xi_1| \leq t\right\}\right)}. For example, if ξ 1 is the standard N(0, 1) Gaussian random variable, then G(t) = ?{\tfrac2p}ò0t e-\fracs22ds {G(t)= \sqrt{\tfrac{2}{\pi}}\int_{0}^t e^{-\frac{s^{2}}{2}}ds }  and M(s)=?{\tfrac2p}ò0se-\frac12t2dt{M(s)=\sqrt{\tfrac{2}{\pi}}\int_{0}^{s}e^{-\frac{1}{2t^{2}}}dt}. We would like to emphasize that our estimates do not depend on the length n of the sequence.  相似文献   

18.
Let ${k[\varepsilon]_{2}:=k[\varepsilon]/(\varepsilon^{2})}Let k[e]2:=k[e]/(e2){k[\varepsilon]_{2}:=k[\varepsilon]/(\varepsilon^{2})} . The single valued real analytic n-polylogarithm Ln: \mathbbC ? \mathbbR{\mathcal{L}_{n}: \mathbb{C} \to \mathbb{R}} is fundamental in the study of weight n motivic cohomology over a field k, of characteristic 0. In this paper, we extend the construction in ünver (Algebra Number Theory 3:1–34, 2009) to define additive n-polylogarithms lin:k[e]2? k{li_{n}:k[\varepsilon]_{2}\to k} and prove that they satisfy functional equations analogous to those of Ln{\mathcal{L}_{n}}. Under a mild hypothesis, we show that these functions descend to an analog of the nth Bloch group Bn¢(k[e]2){B_{n}' (k[\varepsilon]_{2})} defined by Goncharov (Adv Math 114:197–318, 1995). We hope that these functions will be useful in the study of weight n motivic cohomology over k[ε]2.  相似文献   

19.
We generalize a well known convexity property of the multiplicative potential function. We prove that, given any convex function g : \mathbbRm ? [0, ¥]{g : \mathbb{R}^m \rightarrow [{0}, {\infty}]}, the function ${({\rm \bf x},{\rm \bf y})\mapsto g({\rm \bf x})^{1+\alpha}{\bf y}^{-{\bf \beta}}, {\bf y}>{\bf 0}}${({\rm \bf x},{\rm \bf y})\mapsto g({\rm \bf x})^{1+\alpha}{\bf y}^{-{\bf \beta}}, {\bf y}>{\bf 0}}, is convex if β ≥ 0 and α ≥ β 1 + ··· + β n . We also provide further generalization to functions of the form (x,y1, . . . , yn)? g(x)1+af1(y1)-b1 ···fn(yn)-bn{({\rm \bf x},{\rm \bf y}_1, . . . , {y_n})\mapsto g({\rm \bf x})^{1+\alpha}f_1({\rm \bf y}_1)^{-\beta_1} \cdot \cdot \cdot f_n({\rm \bf y}_n)^{-\beta_n} } with the f k concave, positively homogeneous and nonnegative on their domains.  相似文献   

20.
Recently, the first author generalized a formula of Nekrasov and Okounkov which gives a combinatorial formula, in terms of hook lengths of partitions, for the coefficients of certain power series. In the course of this investigation, he conjectured that a(n) = 0 if and only if b(n) = 0, where integers a(n) and b(n) are defined by
?n=0 a(n)xn : = ?n=1  (1-xn)8,\sum^{\infty}_{n=0}\, a(n)x^{n} := \prod^{\infty}_{n=1} \, (1-x^{n})^8,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号