首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 755 毫秒
1.
阳极氧化法制备的TiO_2纳米管阵列因其简单的制备方法、可控的形貌以及环境友好等优点而成为超级电容器领域重点研究的电极材料之一。本文介绍了TiO_2纳米管的多重改性方法,包括引入氧空位、金属或非金属修饰或掺杂、金属化合物(氧化物、氢氧化物、硫化物、氮化物)以及导电聚合物修饰等,以进一步提高TiO_2纳米管的电化学性能。介绍了近年来阳极氧化法制备的TiO_2纳米管阵列在超级电容器中应用的研究进展,为进一步拓展TiO_2纳米管阵列的实际应用提供参考。  相似文献   

2.
Ordered NiO nanowire arrays embedded in anodic alumina membranes have been prepared by using an electrochemical deposition method. After annealing at 300 °C, the NiO nanowire arrays were characterized using SEM, TEM, SAED, and XRD. SEM and TEM observations reveal that these nanowires are dense, continuous and arranged roughly parallel to one another. XRD and SAED analysis together indicate that these NiO nanowires crystallize with a polycrystalline structure. The optical absorption band gap of NiO nanowire arrays is 3.74 eV, and no obvious blue shift or red shift with respect of that of the bulk NiO can be observed.  相似文献   

3.
Self‐assembly of anisotropic plasmonic nanomaterials into ordered superstructures has become popular in nanoscience because of their unique anisotropic optical and electronic properties. Gold nanorods (GNRs) are a well‐defined functional building block for fabrication of these superstructures. They possess important anisotropic plasmonic characteristics that result from strong local electric field and are responsive to visible and near‐IR light. There are recent examples of assembling the GNRs into ordered arrays or superstructures through processes such as solvent evaporation and interfacial assembly. In this Minireview, recent progress in the development of the self‐assembled GNR arrays is described, with focus on the formation of oriented GNR arrays on substrates. Key driving forces are discussed, and different strategies and self‐assembly processes of forming oriented GNR arrays are presented. The applications of the oriented GNR arrays in optoelectronic devices are also overviewed, especially surface enhanced Raman scattering (SERS).  相似文献   

4.
Double cohesion has proved to be a useful tool to assemble robust 2D arrays of large tiles. Here we present a variety of examples showing the utility of this approach. We apply this principle to the 3 types of 2D lattice sections of arrays whose individual tiles are inherently 3 dimensional, because they contain three vectors that span 3-space. This application includes motifs which are based on the tensegrity triangle, the six-helix bundle motif and on three skewed triple crossover molecules. All of these designs have the potential to form 3 dimensional structures if all three directions of propagation are allowed. If one direction is blunted, 2D arrays form, and all 3 combinations are presented here. In addition, a large parallelogram array that was not attainable previously using single duplex cohesion was also constructed using double cohesion. For comparison, arrays which use another type of double cohesion, double paranemic (PX) cohesion are also presented. Double cohesion of sticky ends proved to be the more effective tool to assemble large motifs into arrays.  相似文献   

5.
The extraordinary climbing ability of geckos is partially attributed to the fine structure of their toe pads, which contain arrays consisting of thousands of micrometer-sized stalks (setae) that are in turn terminated by millions of fingerlike pads (spatulae) having nanoscale dimensions. Using a surface forces apparatus (SFA), we have investigated the dynamic sliding characteristics of setal arrays subjected to various loading, unloading, and shearing conditions at different angles. Setal arrays were glued onto silica substrates and, once installed into the SFA, brought toward a polymeric substrate surface and then sheared. Lateral shearing of the arrays was initiated along both the "gripping" and "releasing" directions of the setae on the foot pads. We find that the anisotropic microstructure of the setal arrays gives rise to quite different adhesive and tribological properties when sliding along these two directions, depending also on the angle that the setae subtend with respect to the surface. Thus, dragging the setal arrays along the gripping direction leads to strong adhesion and friction forces (as required during contact and attachment), whereas when shearing along the releasing direction, both forces fall to almost zero (as desired during rapid detachment). The results and analysis provide new insights into the biomechanics of adhesion and friction forces in animals, the coupling between these two forces, and the specialized structures that allow them to optimize these forces along different directions during movement. Our results also have practical implications and criteria for designing reversible and responsive adhesives and articulated robotic mechanisms.  相似文献   

6.
Chromosome analysis has been a cornerstone both for the identification of genetic defects that predispose to a variety of genetic syndromes as well as for the analysis of cancer progression. The relatively low resolution of metaphase chromosomes, however, only allows characterization of major genetic events which are defined at the megabase level. The development of the human genome-wide bacterial artificial chromosome (BACs) libraries which were used as templates for the human genome project made it possible to design microarrays containing these BACs which can theoretically span the genome uninterrupted. Comparative genomic hybridization to these arrays using test and reference DNA samples reveals numerical chromosome abnormalities (deletions, gains and amplifications) which can be accurately defined with a resolution depending on the density of the arrays. Analysis of test DNA samples using these arrays reveals low level deletions and amplifications that cannot be detected by chromosome analysis and provides a global view of these genetic changes in a single overnight hybridization using a high throughput approach. The extent of the genetic changes can then be determined precisely and the gene content of the affected regions established. These BAC arrays have widespread application to the analysis of constitutional genetic abnormalities associated with human diseases as well as cancer patients and their tumors. The development of similar BAC arrays for the mouse genome means that it is now possible to extend the CGHa approach to the study of genetic disorders and cancer models in mice.  相似文献   

7.
New types of microfabricated surface‐enhanced Raman spectroscopy (SERS) active substrates produced by electron beam lithography and ion beam etching are introduced. In order to achieve large enhancement factors by using the lightning rod effect, we prepare arrays consisting of sharp‐edged nanostructures instead of the commonly used dots. Two experimental methods are used for fabrication: a one‐stage process, leading to gold nanostar arrays and a two‐stage process, leading to gold nanodiamond arrays. Our preparation process guarantees high reproducibility. The substrates contain a number of arrays for practical applications, each 200×200 μm2 in size. To test the SERS activity of these nanostar and nanodiamond arrays, a monolayer of the dye crystal violet is used. Enhancement factors are estimated to be at least 130 for the nanodiamond and 310 for the nanostar arrays.  相似文献   

8.
Uniform spot morphology is of critical importance in the fabrication and successful use of protein arrays, and solution additives are often needed to ensure good spot quality. Whereas hydroxyl-bearing molecules such as glycerol have found wide use, in our experience these reduce the efficiency of probe immobilization (particularly in the context of aldehyde-terminated surfaces). Here, we report a series of non-nucleophilic molecules that can be used as additives to improve spot homogeneity in protein arrays. Arrayed imaging reflectometry, a label-free optical biosensing technique, has been used along with spectroscopic ellipsometry to test the spot homogeneity, antibody immobilization efficiency, and activity of antihuman IgG arrays prepared with these non-nucleophilic additives on glutaraldehyde surfaces. It has been determined that 0.1% v/v 12-crown-4 performs optimally in MPBS buffer.  相似文献   

9.
Nanoelectrodes, nanoelectrode arrays and their applications   总被引:2,自引:0,他引:2  
Arrigan DW 《The Analyst》2004,129(12):1157-1165
This review deals with the topic of ultrasmall electrodes, namely nanoelectrodes, arrays of these and discusses possible applications, including to analytical science. It deals exclusively with the use of nanoelectrodes in an electrochemical context. Benefits that accrue from use of very small working electrodes within electrochemical cells are discussed, followed by a review of methods for the preparation of such electrodes. Individual nanoelectrodes and arrays or ensembles of these are addressed, as are nanopore systems which seek to emulate biological transmembrane ion transport processes. Applications within physical electrochemistry, imaging science and analytical science are summarised.  相似文献   

10.
Carbohydrates, as components of glycoproteins, glycolipids and proteoglycans, play an important biological role as recognition markers through carbohydrate-protein interactions. For the most part, biophysical and biochemical methods have been used to analyze these biomolecular interactions. In contrast, less attention has been given to the development of high-throughput procedures to elucidate carbohydrate-protein recognition events. Recently, carbohydrate arrays were developed and employed as a novel high-throughput analytic tool for monitoring carbohydrate-protein interactions. This technique has been used to profile protein binding and enzymatic activity. The results have shown that carbohydrate binding to the corresponding lectins is highly selective and that the relative binding affinities are well correlated with those obtained from solution-based assays. In addition, this effort demonstrated that carbohydrate arrays could be also utilized to identify and characterize novel carbohydrate-binding proteins or carbohydrate-processing enzymes. Finally, the results of this investigation showed that lectin-carbohydrate binding affinities could be quantitatively assessed by determining IC50 values for soluble carbohydrates with the carbohydrate arrays. The results of these studies suggest that carbohydrate arrays have the potential of playing an important role in basic researches, the diagnoses of diseases and drug discovery.  相似文献   

11.
陈洪渊 《分析化学》1992,20(1):107-113
本文介绍各种形式的组合微电极及其最新发展;总结制作这类电极的材料与方法;讨论它们的基本特性,并对其应用和发展趋势作了评述。  相似文献   

12.
John Texter 《Comptes Rendus Chimie》2003,6(11-12):1425-1433
Exciting materials known as photonic band-gap materials have come upon the materials science scene and are being studied by many research groups around the world. These new materials operate on light in a way very analogous to the way semiconductors operate on electrons to produce very fast electronic switching and computing circuits. It is imagined that the successful fabrication of these materials will lead to computing machines operating on light and yielding the ultimate speeds in information processing, as electrons typically move only at about one tenth to one half the speed of light. Such devices will require much less heat dissipation and may lead to further miniaturization of computing circuits. New applications in diverse chemical and biochemical sensing are also emerging from these photonic materials. Separation and filtration materials and diverse mesoporous materials and composites are also being developed that rely on such photonic arrays and assemblies as fabrication templates. Polymer colloids in the size range of tens of nm to tens of microns are key components in such new materials and processes. A major limitation in the production of such new materials and devices is that fabrication of such arrays and assemblies is extremely slow and unsuitable for practical manufacturing. Crystallization of charged colloidal suspensions, annealing of core–shell particle arrays, epitaxial growth of crystals from two–dimensional templates, and annealing of thermoreversible gel particle arrays are being explored to ameliorate these limitations. To cite this article: J. Texter, C. R. Chimie 6 (2003).  相似文献   

13.
This paper reports a chemical strategy for preparing carbohydrate arrays and utilizes these arrays for the characterization of carbohydrate-protein interactions. Carbohydrate chips were prepared by the Diels-Alder-mediated immobilization of carbohydrate-cyclopentadiene conjugates to self-assembled monolayers that present benzoquinone and penta(ethylene glycol) groups. Surface plasmon resonance spectroscopy showed that lectins bound specifically to immobilized carbohydrates and that the glycol groups prevented nonspecific protein adsorption. Carbohydrate arrays presenting ten monosaccharides were then evaluated by profiling the binding specificities of several lectins. These arrays were also used to determine the inhibitory concentrations of soluble carbohydrates for lectins and to characterize the substrate specificity of beta-1,4-galactosyltransferase. Finally, a strategy for preparing arrays with carbohydrates generated on solid phase is shown. This surface engineering strategy will permit the preparation and evaluation of carbohydrate arrays that present diverse and complex structures.  相似文献   

14.
Sensor arrays are useful for many purposes. Our interests include quasi-distributed intrinsic fiber optic arrays, those distributed along the length of an optical fiber. We have demonstrated an optical time-of-flight approach to distinguishing the fluorescence output of such arrays, as well as a synthesis of combinatorial libraries that takes advantage of a support of linear morphology to make numerous compounds in a simple manner without information loss in the synthesis. To unite these research areas, we needed an optical fiber cladding material that meets demanding synthetic and optical requirements. We have chosen the Meldal SPOCC polymer support as the best candidate for such a material and report here our initial results with this material.  相似文献   

15.
Can Weng  W.B. Lee  S. To 《Polymer Testing》2009,28(7):709-714
The presence or absence of residual stresses is a major concern in the injection moulding of plastic products used in precision optical and medical applications. Micro-lens arrays are critical components of LED displays that are produced by micro-injection moulding. Due to their small size, residual stresses in these micro-lens arrays are difficult to measure and characterize. The birefringence method was used in this paper to evaluate residual stresses in injection-moulded micro-lens arrays and the finite element simulation method was also employed to predict their distribution. Comparable results from both experiments and simulation were obtained. It is found that the mould temperature is the most significant processing parameter. The value of maximum residual stress is smaller when the mould temperature is higher. The birefringence method is applicable and efficient for the measurement of residual stress in injection-moulded plastic micro-optics.  相似文献   

16.
Single nucleotide polymorphism (SNP) arrays were used to detect chromosomal regions with DNA copy number alterations. Current statistical methods for microarray-based comparative genomic hybridization (array-CGH) analysis generally assume certain relationships among adjacent markers on the same chromosome, and these assumptions may be questionable. For an SNP-array-based CGH study, multiple normal reference SNP arrays were collected. In order to utilize these normal reference SNP arrays, we derived an empirical distribution of signal ratios for each SNP marker. With an assumed threshold value for the overall error rate control and the defined signal ratio ranges for chromosomal amplification and deletion, we proposed a procedure to identify chromosomal alteration regions based on several bootstrapped one-sample t-tests and the false discovery rate control. When we have multiple arrays for different individuals with the same disease, our method can also be used to detect SNP markers for chromosomal alteration regions that are common among these individuals. We applied our method to a published SNP array data set for breast carcinoma cell lines. For an individual with breast cancer, numerous chromosomal alteration regions were identified. Compared to results of previous studies, our method identified more chromosomal alteration regions, with some being implicated in the literature to harbor genes associated with breast cancer. For multiple cancer arrays, our results suggested the existence of common chromosomal alteration regions. However, a high proportion of false positives also indicated that genetic variations among different individuals with breast cancer can be present.  相似文献   

17.
Zou L  Pang HL  Chan PH  Huang ZS  Gu LQ  Wong KY 《The Analyst》2008,133(9):1195-1200
Carbohydrate microarrays have attracted increasing attention in recent years because of their ability to monitor biologically important protein-carbohydrate interactions in a high-throughput manner. Here we have developed an effective approach to immobilizing intact carbohydrates directly on polystyrene microtiter plates coated with amine-functionalized sol-gel monolayers. Lectin binding was monitored by fluorescence spectroscopy using these covalent arrays of carbohydrates that contained six mono- and di-saccharides on the microplates. In addition, binding affinities of lectin to carbohydrates were also quantitatively analyzed by determining IC(50) values of lectin-specific antibody with these arrays. Our results indicate that microplate-based carbohydrate arrays can be efficiently fabricated by covalent immobilization of intact carbohydrates on sol-gel-coated microplates. The microplate-based carbohydrate arrays can be applied for screening of protein-carbohydrate interactions in a high-throughput manner.  相似文献   

18.
Qu LL  Li DW  Xue JQ  Zhai WL  Fossey JS  Long YT 《Lab on a chip》2012,12(5):876-881
A novel facile method of fabricating disposable and highly reproducible surface-enhanced Raman spectroscopy (SERS) arrays using screen printing was explored. The screen printing ink containing silver nanoparticles was prepared and printed on supporting materials by a screen printing process to fabricate SERS arrays (6 × 10 printed spots) in large batches. The fabrication conditions, SERS performance and application of these arrays were systematically investigated, and a detection limit of 1.6 × 10(-13) M for rhodamine 6G could be achieved. Moreover, the screen printed SERS arrays exhibited high reproducibility and stability, the spot-to-spot SERS signals showed that the intensity variation was less than 10% and SERS performance could be maintained over 12 weeks. Portable high-throughput analysis of biological samples was accomplished using these disposable screen printed SERS arrays.  相似文献   

19.
We report an approach to the in situ synthesis of oligonucleotide arrays on surfaces coated with crosslinked polymer multilayers. Our approach makes use of methods for the 'reactive' layer-by-layer assembly of thin, amine-reactive multilayers using branched polyethyleneimine (PEI) and the azlactone-functionalized polymer poly(2-vinyl-4,4'-dimethylazlactone) (PVDMA). Post-fabrication treatment of film-coated glass substrates with d-glucamine or 4-amino-1-butanol yielded hydroxyl-functionalized films suitable for the Maskless Array Synthesis (MAS) of oligonucleotide arrays. Glucamine-functionalized films yielded arrays of oligonucleotides with fluorescence intensities and signal-to-noise ratios (after hybridization with fluorescently labeled complementary strands) comparable to those of arrays fabricated on conventional silanized glass substrates. These arrays could be exposed to multiple hybridization-dehybridization cycles with only moderate loss of hybridization density. The versatility of the layer-by-layer approach also permitted synthesis directly on thin sheets of film-coated poly(ethylene terephthalate) (PET) to yield flexible oligonucleotide arrays that could be readily manipulated (e.g., bent) and cut into smaller arrays. To our knowledge, this work presents the first use of polymer multilayers as a substrate for the multi-step synthesis of complex molecules. Our results demonstrate that these films are robust and able to withstand the ~450 individual chemical processing steps associated with MAS (as well as manipulations required to hybridize, image, and dehybridize the arrays) without large-scale cracking, peeling, or delamination of the thin films. The combination of layer-by-layer assembly and MAS provides a means of fabricating functional oligonucleotide arrays on a range of different materials and substrates. This approach may also prove useful for the fabrication of supports for the solid-phase synthesis and screening of other macromolecular or small-molecule agents.  相似文献   

20.
Two-dimensional arrays consisting of strongly subspectral molecular graphs and formula periodic tables for polycyclic aromatic hydrocarbons are briefly reviewed. New two-dimensional arrays for free-radical benzenoid hydrocarbons are presented with general analytical expressions for counting their number of resonance structures (SC). The structural origin of the coefficients to these analytical expressions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号