首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biofilms are assemblages of microorganisms and their associated extracellular products at an interface and typically with an abiotic or biotic surface. The study of the morphology of biofilms is important because they are associated with processes of biofouling, corrosion, catalysis, pollutant transformation, dental caries, drug resistance, and so forth. In the literature, biofilms have been examined by atomic force microscopy (AFM), which has proven to be a potent tool to study different aspects of the biofilm development on solid surfaces. In this work, we used AFM to investigate topographical changes during the development process of Enterococcus faecalis biofilms, which were generated on sterile cellulose nitrate membrane (CNM) filters in brain heart infusion (BHI) broth agar blood plates after 24, 36, 72, 192, and 360 h. AFM height images showed topographical changes due to biofilm development, which were used to characterize several aspects of the bacterial surface, such as the presence of extracellular polymeric substance, and the biofilm development stage. Changes in the development stage of the biofilm were shown to correlate with changes in the surface roughness as quantified through the mean roughness.  相似文献   

2.
The biofilm formation of a strain of the extremophile bacterium Acidiphilium sp., capable of donating electrons directly to electrodes, was studied by different surface characterization techniques. We develop a method that allows the simultaneous study of bacterial biofilms by means of fluorescence microscopy and atomic force microscopy (AFM), in which transparent graphitic flakes deposited on a glass substrate are used as a support for the biofilm. The majority of the cells present on the surface were viable, and the growth of the biofilms over time showed a critical increase of the extracellular polymeric substances (EPS) as well as the formation of nanosized particles inside the biofilm. Also, the presence of Fe in Acidiphilium biofilms was determined by X‐ray photoelectron spectroscopy (XPS), whereas surface‐enhanced infrared absorption spectroscopy indicated the presence of redox‐active proteins.  相似文献   

3.
Biofilm is a layer of syntrophic microorganisms stick to each other and to the surface. The importance of biofilms is enormous in various industrial applications and human everyday life. The effects of biofilm could be either positive or negative. Positive effects are encountered in industrial processes, bioremediation, and wastewater treatment. Negative effects are more common with the marine industry being one of the sectors, which confronts severe corrosion problems caused by biofouling on the surfaces of equipment and infrastructures. In space industry, microbial contamination and biofouling adversely affect both crew health and mission-related equipment, the latter including hardware, water systems, piping, and electrical tools. The capacity of biofilms to grow in space environment was confirmed already in 1991. One of the most important surface properties of biofilms is wettability, which dictates not only how a liquid spreads over the uneven external surface of biofilms but also how it penetrates into their porous and morphologically complex structure. To investigate wetting and spreading onto biofilms, model materials are often used to simulate different morphological and functional features of biofilms in a controlled way, for example, soft, deformable, soluble, structured, porous materials. Here, we review recent advances in wetting and spreading on porous and soft deformable surface together with biofilms wetting properties and its importance in space industry. We conclude with a discussion of the main directions for future research efforts regarding biofilm wetting.  相似文献   

4.
Biofouling presents a significant obstacle to the long-term use of electrochemical sensors in complex media. Drinking water biofilms reduce performance of sensors by insulating electrode surfaces by inter alia inhibiting mass transport. Boron-doped diamond (BDD) electrodes are relatively resistant to biofouling and inert at high potentials. These qualities can be exploited to create a drinking water quality sensor that resists biofouling to meet performance criteria for longer, and to enable electrochemical cleaning of the sensor surface in situ using high potentials without disconnecting or disassembling the sensor.A purpose-built BDD wall-jet sensor was compared with a glassy carbon (GC) sensor in ability to determine free chlorine, detect biofilm and remove biofilm in situ. It was found that the BDD produced accurate and reliable readings with a 4.86% standard error and a LOD of 0.18 ppm. The BDD could be electrochemically cleaned in situ whereas this was less successful with the GC electrode. The BDD electrode could also detect electroactive pyocyanin, secreted in the biofilm of the drinking water biofilm indicator organism Pseudomonas aeruginosa, potentially enabling biofouling and non-biological fouling such as scaling to be distinguished. Observed changes in flow sensitivity and current-voltage curves that correspond to fouling provide multiple fouling detection methods, resulting in an accurate, sensitive, water quality sensor that can be cleaned without disassembly or replacement of parts and can identify when cleaning is required.  相似文献   

5.
Bacterial biofilms were imaged by atomic force microscopy (AFM), and their elasticity and adhesion to the AFM tip were determined from a series of tip extension and retraction cycles. Though the five bacterial strains studied included both Gram-negative and -positive bacteria and both environmental and laboratory strains, all formed simple biofilms on glass surfaces. Cellular spring constants, determined from the extension portion of the force cycle, varied between 0.16+/-0.01 and 0.41+/-0.01 N/m, where larger spring constants were measured for Gram-positive cells than for Gram-negative cells. The nonlinear regime in the extension curve depended upon the biomolecules on the cell surface: the extension curves for the smooth Gram-negative bacterial strains with the longest lipopolysaccharides on their surface had a larger nonlinear region than the rough bacterial strain with shorter lipopolysaccharides on the surface. Adhesive forces between the retracting silicon nitride tip and the cells varied between cell types in terms of the force components, the distance components, and the number of adhesion events. The Gram-negative cells' adhesion to the tip showed the longest distance components, sometimes more than 1 microm, whereas the shortest distance adhesion events were measured between the two Gram-positive cell types and the tip. Fixation of free-swimming planktonic cells by NHS and EDC perturbed both the elasticity and the adhesive properties of the cells. Here we consider the biochemical meaning of the measured physical properties of simple biofilms and implications to the colonization of surfaces in the first stages of biofilm formation.  相似文献   

6.
Bacteria-metal interactions in aqueous solutions are important in biofilm formation, biofouling and biocorrosion problems in the natural environment and engineered systems. In this study, the adhesion forces of two anaerobes (Desulfovibrio desulfuricans and Desulfovibrio singaporenus) and an aerobe (Pseudomonas sp.) to stainless steel 316 in various aqueous systems were quantified using atomic force microscopy (AFM) with a cell probe. Results show that the nutrient and ionic strength of the solutions influence the bacteria-metal interactions. The bacteria-metal adhesion force was reduced in the presence of the nutrients in the solution, because a trace organic film was formed and thus decreased the metal surface wettability. Stronger ionic strength in the solution results in a larger bacteria-metal adhesion force, which is due to the stronger electrostatic attraction force between the positively charged metal surface and negatively charged bacterial surface. Solution pH also influences the interaction between the bacterial cells and the metal surface; the bacteria-metal adhesion force reached its highest value when the pH of the solution was near the isoelectric point of the bacteria, i.e. at the zero point charge. The adhesion forces at pH 9 were higher than at pH 7 due to the increase in the attraction between Fe ions and negative carboxylate groups.  相似文献   

7.
A novel approach to the removal of biofilms from solid surfaces is to pass large numbers of air bubbles over the surfaces. Such a phenomenon occurs when teeth are brushed with some types of powered toothbrushes that accelerate bubbly fluid against or across teeth surfaces. Video recordings of air bubbles propelled against a mature biofilm of Streptococcus mutans showed that the bubbles removed the biofilm at the point of collision. A mathematical model of the removal process was proposed and was able to simulate the kinetics of the biofilm removal process. Removal rate was modeled to be proportional to the bubble footprint area and the number of collisions per time. The fraction of biofilm removed per bubble collision is on the order of 0.4, a value much larger than would have been expected based on previous research employing bubbles that moved slowly along a surface that was partially covered with adherent bacteria. The higher removal efficiency is attributed to fluid dynamic shear forces that occur in conjunction with the thermodynamic forces that pull bacteria from a surface as a bubble contacts the biofilm. Fast bubbly flow is expected to remove bacterial biofilm from hard surfaces such as teeth.  相似文献   

8.
An assemblage nexus of microorganisms enclosed in a composite extracellular polymeric matrix is called as a biofilm. The main factor causing biological fouling, or biofouling, is biofilms. Biofilm-mediated biofouling is a significant detrimental issue in several industries, including the maritime environment, industrial facilities, water treatment facilities, and medical implants. Conventional antibacterial remedies cannot wholly eradicate bacterial species owing to the structural rigidity of biofilm and the eventual growth of antibiotic-resistant microorganisms. Consequently, several approaches to disrupt the biofilm have been investigated to address this particular phenomenon. Antimicrobial peptides (AMPs) have emerged as a promising contender in this category, offering several advantages over traditional solutions, including broad-spectrum action and lack of antibiotic resistance. Because biofouling significantly impacts the marine industry, AMPs derived from marine sources may be suitable natural inhibitors of bacterial proliferation. In this article, we discuss the range of physicochemical and structural diversity and the model of action seen in marine AMPs. This makes them an appealing strategy to mitigate biofilm and biofilm-mediated biofouling. This review also systematically summarizes recent research on marine AMPs from vertebrates and invertebrates and their industrial significance, shedding light on developing even better anti-biofouling materials shortly.  相似文献   

9.
Lactic acid bacteria (LAB) naturally inhabits the organisms of honeybees and can exhibit adhesive properties that protect these insects against various pathogenic microorganisms. Thus, cell surface (auto-aggregation, co-aggregation, hydrophobicity) and adhesive properties of LAB to two abiotic (polystyrene and glass) and four biotic (collagen, gelatin, mucus, and intestinal Caco-2 cells) surfaces were investigated. Additionally, anti-adhesion activity and the eradication of honeybee pathogen biofilms by LAB metabolites (culture supernatants) were determined. The highest hydrophobicity was demonstrated by Pediococcus pentosaceus 19/1 (63.16%) and auto-aggregation by Lactiplantibacillus plantarum 18/1 (71.91%). All LAB showed a broad spectrum of adhesion to the tested surfaces. The strongest adhesion was noted for glass. The ability to co-aggregate with pathogens was tested for the three most potently adherent LAB strains. All showed various levels of co-aggregation depending on the pathogen. The eradication of mature pathogen biofilms by LAB metabolites appeared to be weaker than their anti-adhesive properties against pathogens. The most potent anti-adhesion activity was observed for L. plantarum 18/1 (98.80%) against Paenibacillus apiarius DSM 5582, while the strongest biofilm eradication was demonstrated by the same LAB strain against Melissococcus plutonius DSM 29964 (19.87%). The adhesive and anti-adhesive activity demonstrated by LAB can contribute to increasing the viability of honeybee colonies and improving the conditions in apiaries.  相似文献   

10.
The rheology of bacterial biofilms at the micron scale is an important step to understanding the communal lifecycles of bacteria that adhere to solid surfaces, as it measures how they mutually adhere and desorb. Improvements in particle-tracking software and imaging hardware have allowed us to successfully employ particle-tracking microrheology to measuring single-species bacterial biofilms, based on Staphlococcus aureus and Pseudomonas aeruginosa. By tracking displacements of the cells at a range of timescales, we separate active and thermal contributions to the cell motion. The S. aureus biofilms in particular show power-law rheology, in common with other dense colloidal suspensions. By calculating the mean compliance of S. aureus biofilms, we observe them becoming less compliant during growth, and more compliant during starvation. The biofilms are rheologically inhomogeneous on the micron scale, as a result of the strength of initial adhesion to the flow cell surface, the arrangement of individual bacteria, and larger-scale structures such as flocs of P. aeruginosa. Our S. aureus biofilms became homogeneous as a function of height as they matured: the rheological environment experienced by a bacterium became independent of how far it lived from the flow cell surface. Particle-tracking microrheology provides a quantitative measure of the "strength" of a biofilm. It may therefore prove useful in identifying drug targets and characterizing the effect of specific molecular changes on the micron-scale rheology of biofilms.  相似文献   

11.
Developing a green and sustainable method to upgrade biogas wastes into high value-added products is attracting more and more public attention. The application of solid residues as a performance enhancer in the manufacture of biofilms is a prospective way to replace conventional plastic based on fossil fuel. In this work, solid digestates from the anaerobic digestion of agricultural wastes, such as straw, cattle and chicken manures, were pretreated by an ultrasonic thermo-alkaline treatment to remove the nonfunctional compositions and then incorporated in plasticized starch paste to prepare mulching biofilms by the solution casting method. The results indicated that solid digestate particles dispersed homogenously in the starch matrix and gradually aggregated under the action of a hydrogen bond, leading to a transformation of the composites to a high crystalline structure. Consequently, the composite biofilm showed a higher tensile strength, elastic modulus, glass transition temperature and degradation temperature compared to the pure starch-based film. The light, water and GHG (greenhouse gas) barrier properties of the biofilm were also reinforced by the addition of solid digestates, performing well in sustaining the soil quality and minimizing N2O or CH4 emissions. As such, recycling solid digestates into a biodegradable plastic substitute not only creates a new business opportunity by producing high-performance biofilms but also reduces the environmental risk caused by biogas waste and plastics pollution.  相似文献   

12.
Colloid attachment to liquid–gas interfaces is an important process used in industrial applications to separate suspended colloids from the fluid phase. Moving gas bubbles can also be used to remove colloidal dust from surfaces. Similarly, moving liquid–gas interfaces lead to colloid mobilization in the natural subsurface environment, such as in soils and sediments. The objective of this study was to quantify the effect of moving air–water interfaces on the detachment of colloids deposited on an air-dried glass surface, as a function of colloidal properties and interface velocity. We selected four types of polystyrene colloids (positive and negative surface charge, hydrophilic and hydrophobic). The colloids were deposited on clean microscope glass slides using a flow-through deposition chamber. Air–water interfaces were passed over the colloid-deposited glass slides, and we varied the number of passages and the interface velocity. The amounts of colloids deposited on the glass slides were visualized using confocal laser scanning microscopy and quantified by image analysis. Our results showed that colloids attached under unfavorable conditions were removed in significantly greater amounts than those attached under favorable conditions. Hydrophobic colloids were detached more than hydrophilic colloids. The effect of the air–water interface on colloid removal was most pronounced for the first two passages of the air–water interface. Subsequent passages of air–water interfaces over the colloid-deposited glass slides did not cause significant additional colloid removal. Increasing interface velocity led to decreased colloid removal. The force balances, calculated from theory, supported the experimental findings, and highlight the dominance of detachment forces (surface tension forces) over the attachment forces (DLVO forces).  相似文献   

13.
There is a substantial need for novel measurement techniques that enable non-invasive spatially resolved observation of biofouling in nanofiltration (NF) and reverse osmosis (RO) membrane modules. Such measurements will enhance our understanding of the key design and operational parameters influencing biofilm fouling. In this study we demonstrate the first application of nuclear magnetic resonance microscopy (NMR) to a spiral wound reverse osmosis (RO) membrane module. The presented NMR protocols allow the extraction of the evolution with biofouling of (i) the spatial biofilm distribution in the membrane module, (ii) the spatially resolved velocity field and (iii) displacement propagators, which are distributions of molecular displacement of a passive tracer (in our case, water) in the membrane. From these measurements, the effective membrane surface area is quantified. Despite the opaque nature of membrane design, NMR microscopy is shown to be able to provide a non-invasive quantitative measurement of RO membrane biofouling and its impact on hydrodynamics and mass transport. Minimal biofilm growth is observed to have a substantial impact on flow field homogeneity.  相似文献   

14.
The silicon surface of commercial atomic force microscopy (AFM) probes loses its hydrophilicity by adsorption of airborne and package-released hydrophobic organic contaminants. Cleaning of the probes by acid piranha solution or discharge plasma removes the contaminants and renders very hydrophilic probe surfaces. Time-of-flight secondary-ion mass spectroscopy and X-ray photoelectron spectroscopy investigations showed that the native silicon oxide films on the AFM probe surfaces are completely covered by organic contaminants for the as-received AFM probes, while the cleaning methods effectively remove much of the hydrocarbons and silicon oils to reveal the underlying oxidized silicon of the probes. Cleaning procedures drastically affect the results of adhesive force measurements in water and air. Thus, cleaning of silicon surfaces of the AFM probe and sample cancelled the adhesive force in deionized water. The significant adhesive force values observed before cleaning can be attributed to formation of a bridge of hydrophobic material at the AFM tip-sample contact in water. On the other hand, cleaning of the AFM tip and sample surfaces results in a significant increase of the adhesive force in air. The presence of water soluble contaminants at the tip-sample contact lowers the capillary pressure in the water bridge formed by capillary condensation at the AFM tip-sample contact, and this consequently lowers the adhesive force.  相似文献   

15.
The polysaccharides associated with free (planktonic) and surface-attached (biofilm) cells from cultures of Pseudomonas fluorescens strain B52 were compared. Variations in the attached matrix due to surface material (glass or stainless steel) were also analyzed. Two digestion methods were used to optimize the recoveries of sugars, uronic acids and acidic substituents. The yield of analyzable material after digestion reached 90% for the material associated to the biofilms, though only 20–30% for that bound to planktonic cells. The polysaccharide(s) in the biofilm had glucuronic and guluronic acids as main components, besides rhamnose, glucose and glucosamine. The proportion of glucuronic to guluronic acid was higher in the polysaccharide(s) found in biofilms formed on stainless steel than in those on glass.  相似文献   

16.
The polysaccharides associated with free (planktonic) and surface-attached (biofilm) cells from cultures of Pseudomonas fluorescens strain B52 were compared. Variations in the attached matrix due to surface material (glass or stainless steel) were also analyzed. Two digestion methods were used to optimize the recoveries of sugars, uronic acids and acidic substituents. The yield of analyzable material after digestion reached 90% for the material associated to the biofilms, though only 20–30% for that bound to planktonic cells. The polysaccharide(s) in the biofilm had glucuronic and guluronic acids as main components, besides rhamnose, glucose and glucosamine. The proportion of glucuronic to guluronic acid was higher in the polysaccharide(s) found in biofilms formed on stainless steel than in those on glass.  相似文献   

17.
Colloid probe atomic force microscopy (CP-AFM) was used to investigate two strains of Burkholderia cepacia in order to determine what molecular scale characteristics of strain Env435 make it less adhesive to surfaces than the parent strain, G4. CP-AFM approach curves analyzed using a gradient force method showed that in a high ionic strength solution (IS=100 mM, Debye length=1 nm), the colloid probe was attracted to the surface of strain G4 at a distance of approximately 30 nm, but it was repelled over a distance of 25 nm when approaching strain Env435. Adhesion forces measured under the same solution conditions during colloid retraction showed that 1.38 nN of force was required to remove the colloid placed in contact with the surface of strain G4, whereas only 0.58 nN was required using strain Env435. At IS=1mM (Debye length=10nm), the attractive force observed with G4 was no longer present, and the repulsive force seen with Env435 was extended to approximately 250 nm. The adhesion of the bacteria to the probe was much less at low IS solution (1 mM) than at high IS (100 mM). The greater adhesion characteristics of strain G4 compared to Env435 were confirmed in column tests. Strain G4 had a collision efficiency of alpha=0.68, while strain Env435 had a much lower collision efficiency of alpha=0.01 (IS=100 mM). These results suggest that the reduced adhesion of strain Env435 measured in column tests is due to the presence of high molecular weight extracellular polymeric substances that extend out from the cell surface, creating long-range steric repulsion between the cell and a surface. Adhesion is reduced as these polymers do not appear to be "sticky" when placed in contact with a surface in AFM tests.  相似文献   

18.
Study of bioadhesion on a flat plate with a yeast/glass model system   总被引:3,自引:0,他引:3  
The attachment of microorganisms to a surface is a critical first step of biofilm fouling in membrane processes. The shear-induced detachment of baker's yeast in adhesive contact with a plane glass surface was thus experimentally studied, using a specially designed shear stress flow chamber. The yeast was marketed either as rod-shaped pellets (type I yeast) or as spherical pellets (type II yeast). A complete series of experiments for measuring the shear stress necessary to detach a given proportion of individual yeast cells of type I or II was performed under different environmental conditions (ionic strength, contact time). In parallel, the surface physicochemical properties of the cells (surface charge, hydrophobicity, and electron donor and electron acceptor components) were determined. For the first type of yeast cells, which were rather hydrophilic, adhesion to the glass plate was weak. This was due to both electrostatic effects and hydrophilic repulsion. Furthermore, adhesion was not sensitive to any variation of the ionic strength. For yeast of the second type, adhesion was drastically increased. This could be explained by their physicochemical surface properties and especially their hydrophobic and electron acceptor components, which caused strong attractive van der Waals and Lewis acid-base interactions, counterbalancing the electrostatic repulsion. For increasing ionic strengths, adhesion was greater, due to lower electrostatic repulsion. The results were quantified through the definition of a critical wall shear stress ( tau w 50% ) required to detach 50% of the yeast cells initially deposited on the glass surface. The influence of the contact time was also evaluated and it was shown that, whatever the type of yeast, macromolecules such as proteins were released into the extracellular medium due to cell lysis and could contribute to the formation of a conditioning film. As a result, the cells were more strongly stuck to the glass plate.  相似文献   

19.
 Experimental results on the role of adsorbed polymers on the particle adhesion are presented. Both Brownian (silica particles) and non-Brownian (glass beads) particles were used. The particles were deposited onto the internal surface of a glass parallelepiped cell, and then submitted to increasing laminar flow rates. The pH and the ionic strength of the electrolytes were fixed. The adhesive force was related to the hydrodynamic force required to dislodge 50% of the initially attached beads. We found that high molecular weight PEO had little effect on the adhesion of small silica beads due to the low affinity of the polymer for silica or glass surfaces. On the contrary, PEO greatly enhanced the adhesion of bigger glass beads forced to deposit on the capillary surface because of gravity. The increase was all the more pronounced as the molecular weight of the polymer was high. The effect of high molecular weight cationic copolymers on the adhesion of silica particles was drastic. The maximal force (1500 pN) applied by the device could not enable any particle detachment even using polymers of low cationicity rate (5%), showing the efficiency of electrostatic attractions. When copolymers were adsorbed on both surfaces (particles and plane), the adhesive force exhibited a maximum at intermediate coverage of particles. This optimum was related to the optimum flocculation concentration classically observed in flocculation of suspensions by polymers. Received: 16 February 1996 Accepted: 10 September 1996  相似文献   

20.
We observed the surface morphology and adhesive interaction of adsorbents on rubber substrates by atomic force microscopy (AFM). The detachment of adsorbents from rubber substrates is an important issue for various machines like home appliances and laundry machine. Since a clean surface of the functioning parts is required, a frequent cleaning process must be developed. In particular, dust and lint have a tendency to bind to the rubber surface of a laundry machine. Several practical methods have been attempted to remove these particles from the surface. Pure water, detergent, sodium hypochlorite (65 °C), and cold water (18 °C) are treated onto artificial dust and lint mixtures on rubber with water fluid by rapid rpm. The dust‐and‐lint adsorbents are investigated by AFM after the treatment, and topographic images and force–distance (F–D) curves were generated for the samples. The roughness, measured as the root mean square, is a key factor to judge the cleaning quality. From the F–D curves, we are able to obtain adhesive energy in addition to adhesive force which will yield qualitative measures of the interactions between the remaining adsorbents and the rubber surface. Considering the values that were measured, hot water with water fluid by rapid rpm offers the best performance when cleaning the surface. The chemical like sodium hypochlorite is good for thinning the materials, but it solidifies them, which is eventually detrimental to proper functioning. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号