首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
没食子酸正丁酯为白色或淡褐黄色的结晶粉末,无臭,稍有苦味;难溶于水,易溶于乙醇,是一种油溶性的抗氧化剂,常作为食品稳定剂、感光材料添加剂等。没食子酸正丁酯可由没食子酸和正丁醇在硫酸催化下直接合成。硫酸催化活性高,价格低,但对设备腐蚀严重,副反应多,产率  相似文献   

2.
没食子酸正丁酯为白色或淡褐黄色的结晶粉末,无臭,稍有苦味;难溶于水,易溶于乙醇,是一种油溶性的抗氧化剂,常作为食品稳定剂、感光材料添加剂等[1 ] 。没食子酸正丁酯可由没食子酸和正丁醇在硫酸催化下直接合成。硫酸催化活性高,价格低,但对设备腐蚀严重,副反应多,产率低,反应时间长,后处理比较困难。近年来有采用十二烷基苯磺酸、固体超强酸[2 ,4] 等作为替代硫酸的催化剂。固体超强酸的应用研究进展较快,已从单一型向复合型发展。本文在微波辐射下用固体超强酸SO2 -4 /TiO2 /La3+为催化剂由没食子酸与正丁醇合成没食子酸正丁酯,考察了反…  相似文献   

3.
研究了以稀土固体超强酸SO24-/TiO2/La3+为催化剂,水杨酸和异丁醇为原料合成水杨酸异丁酯,并考察了影响反应的因素.结果表明,醇酸比为3:1,催化剂用量为1.0 g(水杨酸为0.1 mol的情况下),带水剂苯为15 mL,反应时间为3.0 h是最适宜的反应条件,酯化率达96.2%.  相似文献   

4.
稀土固体超强酸SO2-4/TiO2/Ce(Ⅳ)催化合成乙酸正丁酯   总被引:3,自引:0,他引:3  
以SO2-4/TiO2/Ce(Ⅳ)为催化剂,乙酸和正丁醇为原料合成了乙酸正丁酯,在n(醇)∶n(酸)=1.4,催化剂0.5g(乙酸200mmol时),反应时间1.5h的优化反应条件下,酯化率在96%以上.  相似文献   

5.
訾俊峰 《合成化学》2003,11(3):277-279
以SO4^2-/TiO2/Ce(Ⅳ)为催化剂,乙酸和正丁醇为原料合成了乙酸正丁酯,在n(醇):n(酸)=1.4,催化剂0.5g(乙酸200mmol时),反应时间1.5h的优化反应条件下,酯化率在96%以上。  相似文献   

6.
尿囊素(1-脲基间二氮杂茂烷二酮-(2,4),allantoin)是一种两性化合物,可作为医药、化妆品、农业等化工原料中间体.通常用硝酸或过氧化氢氧化乙二醛生成乙醛酸后,再在酸催化下由乙醛酸与尿素缩合而成.但采用浓H2SO4、HNO3等作催化剂,产率偏低(<50%),选择性差,产品质量不好,同时设备腐蚀严重,污染环境.用SO2-4/MxOy型固体超强酸催化剂催化合成尿囊素[2-3],仍有产率偏低等不足之处.我们用La3+掺杂改性SO2-4/TiO2体系,合成了稀土固体超强酸催化剂SO2-4/TiO2-La3+,考察了合成尿囊素缩合反应的催化条件,在最适宜的反应条件下,催化合成尿囊素的产率可提高至74.5%,且工艺简单,易回收并可多次重复使用.  相似文献   

7.
稀土固体超强酸SO42-/TiO2/La3+催化合成丁酸异戊酯   总被引:4,自引:0,他引:4  
丁酸异戊酯是无色至淡黄色透明油状液体,有近似生梨和香蕉香甜气。天然品存在于椰子油、可可豆、苹果、香蕉、葡萄、草莓等中,是我国GB2760-86规定允许使用的食用香料,主要用以配制香蕉、菠萝、杏、樱桃和杂锦水果等型香精;也可用作提取天然香料的溶剂、乙酸纤维素的溶剂及增塑剂。通常它是在硫酸催化下由丁酸和异戊醉酯化反应而得[1,2],反应时间长,副反应多,对设备腐蚀严重,废水排放量大,后处理工艺复杂。为此,本实验选用稀土固体超强酸SO42-/TiO2/La3+作为催化剂进行某些酸与异戊醇的酯化反应。 …  相似文献   

8.
稀土固体超强酸催化合成庚酸丁酯   总被引:16,自引:0,他引:16  
庚酸丁酯是无色液体 ,具有生苹果香味。主要用以配制苹果型香精 ,是我国 GB2 760— 86规定允许使用的食用香料 ,也可用于有机合成和用作溶剂。通常它是在硫酸催化下由庚酸和正丁醇酯化反应而得[1] 。硫酸虽然活性高 ,价廉 ,但选择性差 ,产品质量不好 ,设备腐蚀严重 ,同时产生大量废液 ,污染环境。为此 ,本实验选用稀土固体超强酸 SO2 - 4/ Ti O2 / La3+作为催化剂进行庚酸与正丁醇的酯化反应。固体超强酸是比 1 0 0 %的硫酸更强的酸 ,即H0 <-1 1 .94的酸[2 ] 。在某些有机催化反应中 ,固体超强酸显示出非常高的催化活性 ,具有不怕水、耐…  相似文献   

9.
稀土固体超强酸SO2-4/TiO2/La3+催化合成苯乙酸乙酯   总被引:7,自引:0,他引:7  
苯乙酸乙酯,常作为修饰剂和主香剂,应用于烟草、食品、日用化妆品等行业,还可以用于生产巴比妥类催眠药鲁米那,也可作溶剂.工业生产中采用硫酸催化合成苯乙酸乙酯,但硫酸有脱水和氧化作用,生成众多副产物,产物后处理工艺复杂,污水排放量大,严重腐蚀设备.本文合成了稀土固体超强酸SO2-4/TiO2/La3+催化剂,考察了影响催化活性的一些因数及催化合成苯乙酸乙酯的条件.此催化剂不仅克服了浓硫酸催化的一些缺点,而且酯化率高,反应时间缩短一半,反应温度降低15℃,容易回收、可以多次重复使用,适宜工业生产.  相似文献   

10.
固体超强酸催化剂SO2-4/TiO2-WO3的制备及其催化性能研究   总被引:15,自引:0,他引:15  
杨水金  白爱民  余协卿  孙聚堂 《有机化学》2004,24(10):1262-1266
制备了固体超强酸催化剂SO2-4/TiO2-WO3,并以丁酸丁酯的合成作为探针反应,系统考察了WO3的含量、硫酸浸渍浓度、焙烧温度等制备条件对SO2-4/TiO2-WO3催化活性的影响.实验表明:制备催化剂的适宜条件为m(H2WO4)=12.5%,硫酸浸渍浓度为1.0 mol·L-1,焙烧温度为580℃,活化时间3 h.利用优化条件下制备的催化剂SO2-4/TiO2-WO3催化合成缩醛(酮),在醛/酮与二元醇(乙二醇,1,2-丙二醇)的投料摩尔比为1:1.5,催化剂的用量占反应物总投料质量的0.5%,反应时间为l h条件下,2-甲基-2-乙氧羰甲基-1,3-二氧环戊烷的收率为78.7%,2,4-二甲基-2-乙氧羰甲基-1,3-二氧环戊烷的收率为83.0%,环己酮-乙二醇缩酮的收率为85.9%,环己酮-1,2-丙二醇缩酮的收率为84.6%,丁酮-乙二醇缩酮的收率为70.7%,丁酮-1,2-丙二醇缩酮的收率为88.3%,2-丙基-1,3-二氧环戊烷的收率为80.6%,4-甲基-2-丙基-1,3-二氧环戊烷的收率为79.6%,2-异丙基-1,3-二氧环戊烷的收率为64.2%,4-甲基-2-异丙基-1,3-二氧环戊烷的收率为83.3%,2-苯基-l,3-二氧环戊烷的收率为75.3%,4-甲基-2-苯基-1,3-二氧环戊烷的收率为95.1%.  相似文献   

11.
研究了以固体超强酸SO2-4/TiO2-La3+作为催化剂,浓硝酸和甲苯为原料合成硝基甲苯,并考察了影响反应的因素.结果表明,催化剂用浓度为1.0 mol·L-1硫酸浸泡3小时,反应催化剂用量为硝酸质量的10%,反应时间为3小时,反应温度为55℃是最适宜的反应条件,甲苯转化率达90.14%,邻对比达0.89.  相似文献   

12.
研究了以固体超强酸SO24-/TiO2-La3 作为催化剂,浓硝酸和甲苯为原料合成硝基甲苯,并考察了影响反应的因素。结果表明,催化剂用浓度为1.0 mol.L-1硫酸浸泡3小时,反应催化剂用量为硝酸质量的10%,反应时间为3小时,反应温度为55℃是最适宜的反应条件,甲苯转化率达90.14%,邻对比达0.89。  相似文献   

13.
采用镧对固体超强酸SO4^2-/TiO2/铝交联膨润土(SO4^2-/TiO2/Al—PILC)进行改性,制备了La-SO4^2-/TiO2/Al—PILC稀土超强酸,并采用XRD、低温N2吸附法及吡啶吸附红外等方法对其进行了结构、表面性能及酸性的表征。实验结果表明,镧引入SO4^2-/TiO2/Al—FILC超强酸,对TiO2锐钛矿晶相的形成没有影响,但对锐钛矿晶相向金红石相的转变有抑制作用,镧的引入使催化剂的酸强度及酸中心的数量有所增加,镧能有效地减少催化剂表面SO4^2-的流失量,从而提高催化剂的活性稳定性。  相似文献   

14.
采用镧对固体超强酸SO42-/TiO2/铝交联膨润土(S042-/TiO2/Al-PILC)进行改性,制备了La—SO42-/TiO2/Al-PILC稀土超强酸,并采用XRD、低温N2吸附法及吡啶吸附红外等方法对其进行了结构、表面性能及酸性的表征。实验结果表明,镧引人SO42-/TiO2/Al-PILC超强酸,对TiO2锐钛矿晶相的形成没有影响,但对锐钛矿晶相向金红石相的转变有抑制作用,镧的引人使催化剂的酸强度及酸中心的数量有所增加,镧能有效地减少催化剂表面SO42-的流失量,从而提高催化剂的活性稳定性。  相似文献   

15.
二芳基乙烷是由烷基苯和苯乙烯进行芳基化反应所得的产物,简称PXE。它是压敏复写纸显色剂的优良溶剂,塑料加工的增塑剂和热载体。  相似文献   

16.
复合固体超强酸SO2-4/TiO2-Fe2O3催化合成丁酸异丁酯   总被引:6,自引:0,他引:6  
采用溶胶-凝胶法制备的复合固体超强酸催化剂SO2-4/TiO2-Fe2O3催化合成丁酸异丁酯[1],结果表明物质的量比n(Ti)∶n(Fe)=2∶1时催化剂活性最高,这与文献结果[2]有所不同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号