首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
通过对溶胶凝胶超临界干燥法制备的NiO/SiO2Al2O3催化剂上CO氧化反应的原位DSC测试,实现了对催化剂的活性以及催化剂制备参数影响反应性能的规律考察,同时与实际微反结果进行了比较。结果表明:微反的结果与DSC测试结果取得较好的一致性,催化剂的CO氧化活性与DSC半峰温值呈现相应的变化规律;在四个制备参数中以载体对活性的影响最大。对各DSC曲线的活化能计算表明,活化能值的大小可以较好地反映催化剂的反应行为。  相似文献   

2.
研究了Pt/Al2O3和Pt/CeO2/Al2O3催化剂对甲烷部分氧化制合成气反应的催化活性,发现Pt/CeO2/Al2O3显示了比Pt/Al2O3更高的甲烷转化率和合成气选择性。用H2TPR,H2TPD,SEM和XRD等手段和技术对催化剂进行了表征。CeO2与Pt之间存在较强的相互作用(SMSI),这种作用促进了Pt在催化剂表面的分散,抑制了Pt在催化剂表面的迁移,大大降低了催化剂在反应中的完全燃烧活性,提高了催化剂的部分氧化活性和选择性,避免了因催化剂床层局部温度过高而导致催化剂活性下降或失活,提高了催化剂的稳定性。同时,在反应过程中,CeO2通过促进水蒸气变换反应(WGSR)的进行使反应体系迅速达到平衡,提高了催化剂对H2的选择性。  相似文献   

3.
采用沉淀法制备了ZrO2,CeO2和Ce0.7Zr0.3O2载体,并用浸渍法制备负载型Pt催化剂。考察了500和900℃焙烧催化剂的丙烷完全氧化性能和水汽对丙烷氧化反应的影响。对于500℃焙烧的催化剂,催化剂的丙烷氧化活性顺序为:Pt/ZrO2-500>Pt/CeO2-500>Pt/Ce0.7Zr0.3O2-500;而经900℃焙烧的催化剂活性顺序为:Pt/ZrO2-900>Pt/Ce0.7Zr0.3O2-900>Pt/CeO2-900。反应气氛中水汽的存在对两种Pt/ZrO2催化剂的活性均有抑制作用(T50温度均提高了10~15℃);而对于Pt/CeO2-500催化剂有抑制作用(T50温度提高10℃),但对Pt/CeO2-900催化剂活性有促进作用(T50温度下降25℃);对于两种Pt/Ce0.7Zr0.3O2催化剂活性具有促进作用(T50温度均下降5~25℃)。表征结果表明催化剂的活性与其表面Pt物种价态密切相关,催化剂表面上Pt0物种有利于活性的提高。Pt/Ce0.7Zr0.3O2-500催化剂中只含有氧化态Pt物种(Pt^2+),而Pt/Ce0.7Zr0.3O2-900催化剂中则含有部分金属态Pt物种,因此其活性高于Pt/Ce0.7Zr0.3O2-500催化剂。  相似文献   

4.
5.
对利用溅射技术制备的Pt/Al_2O_3和Pt-Sn/Al_2O_3模型催化剂,以透射电子显微镜研究了金属粒子在H_2气中加热过程的烧结情况。实验结果表明,随着加热温度的升高,催化剂品粒逐渐长大,但加热到700℃经2h后,Pt/Al_2O_3的晶粒比Pt-Sn/Al_2O_3的大,这可能是Sn对Pt晶粒烧结起抑制作用。如将晶粒已经长大的样品再在空气中于500℃加热2h,则晶粒发生再分散。另外,在H_2气中加热后的催化剂的电子衍射花样,在Pt/Al_2O_3样品中仍表现Pt的特征;而在Pt-Sn/Al_3O_3样品中则形成几种不同组成的合金,我们推测可能是在还原过程中Pt与Sn之间发生强相互作用。  相似文献   

6.
以CeO2为载体,采用浸渍法制备了负载型Pt催化剂用于低温甲醛氧化反应,考察了Pt前驱体及Pt负载量等因素对催化性能的影响。XRD,TEM和CO化学吸附表征结果表明Pt粒子在载体上高度分散。反应结果表明,以Pt(NO3)2为前驱体比H2PtC l6为前驱体制备的催化剂表现出更好的反应性能,C l-离子的存在降低了催化剂的氧化还原能力,从而抑制了催化活性。此外,催化剂的活性随着Pt负载量的增加而增强,其中Pt负载量为3%时催化剂在30℃时甲醛转化率仍在80%以上。  相似文献   

7.
利用沉积沉淀法制备了Pt/TiO2催化剂, 将其在不同温度下焙烧, 以得到不同颗粒尺寸的Pt. 并将这些样品用于CO催化氧化反应以及反应动力学研究. 结果表明: 焙烧温度对催化剂有明显影响, Pt 颗粒尺寸随着焙烧温度的升高而增加; 与此同时, CO催化活性随焙烧温度的升高呈先增加后降低的趋势, 其中, 400℃焙烧的样品表现出最高的催化活性. 反应动力学结果表明, 催化剂上CO氧化反应表观速率方程为r=5.4×10-7pCO0.17pO20.36,说明在该催化剂上CO氧化遵循Langmuir-Hinshelwood机理. 同时, 对催化剂进行了CO化学吸附红外光谱和O2化学吸附表征. 结果表明, 随着焙烧温度的升高, 催化剂上CO和O2吸附量均呈现先升高后降低的趋势, 这与反应结果和反应动力学方程一致, 说明反应受到催化剂表面上CO和O2吸附浓度的影响. 而在400℃焙烧的催化剂上, CO和O2吸附量均最高, 因此其反应活性也最好. 这可能是焙烧过程影响了Pt 和TiO2之间的相互作用引起的.  相似文献   

8.
制备了以γ-Al2O3为载体的Ni-Mo催化剂,并用于FCC汽油的加氢硫转移反应。对Ni-Mo/Al2O3催化剂上的硫转移反应机理进行了研究,考察了不同反应条件对硫转移反应的影响。实验结果表明,硫醇与烯烃的反应在催化剂表面的加氢活性位上进行,小分子的硫醇发生加氢脱硫,生成吸附态H2S,吸附态的H2S与烯烃反应,生成大分子硫醇和硫醚;另外小分子硫醇还可直接与烯烃发生反应,生成硫醚。提高反应温度、压力、氢油比或降低空速,均可提高催化剂的硫转移反应活性,轻质硫转化率得到明显提高,且单烯选择性还能维持在98%左右。  相似文献   

9.
Pt/Al_2O_3,Pd/Al_2O_3催化剂上CO氧化与表面氧脱出-恢复性能周仁贤,郑小明(杭州大学催化研究所,杭州310028)关键词铂,钯,氧化铝,氧化锆,负载型催化剂,一氧化碳,氧化,氧脱附AI。O。负载的贵金属(Pt,Pd或Rh等)催化剂对有...  相似文献   

10.
Pt/Al_2O_3催化剂经氢还原后,是否存在难于还原的铂离子(或称可溶性铂)已争论很久。Mchenry等首先提到Pt/Al_2O_3催化剂的活性与其中存在可溶性铂有关。它是一种难还原的由氯铂酸与Al_2O_3相互作用生成的稳定络合物。后经实验证实,并推测可溶性铂位于Al_2O_3晶体中的阳离子缺陷处。  相似文献   

11.
12.
Ni/Al2O3催化剂上甲烷部分氧化制合成气反应机理   总被引:12,自引:2,他引:12  
用变应答/质谱在线检测技术研究了Ni/Al2O3催化剂上甲烷部分氧化制合成气的反应要理,研究结果指出,在常压973K条件下,Ni/Al2O3催化剂上甲烷部分氧化制合成气按直接氧化机理进行,H2和C烛甲烷部分氧化的一次产物,其主要反应可表示如下:1.CH4+xNi-NixC+2H2,2.O2+2Ni-2NiO,3.NixC+NiO-CO+(x+1)Ni。  相似文献   

13.
考察了Ru助剂对Mo和Co-Mo/Al_2O_3催化剂加氢脱硫性能的影响,发现少量Ru(NO_3)_3的引入可显著提高催化剂的HDS(加氢脱硫)和HYD(环己烯加氢)性能。测定了硫化态催化剂的化学吸H_2、O_3和CO量,表明Ru助剂的作用主要是促进催化剂上形成更多的活性中心。  相似文献   

14.
K助化Co—Mo/Al2O3催化剂的表征   总被引:1,自引:0,他引:1  
  相似文献   

15.
MoO3/La2O3催化剂上的甲烷选择性氧化制甲醇   总被引:3,自引:0,他引:3  
张益群  张沛  马建新 《催化学报》1997,18(5):425-427
  相似文献   

16.
17.
Au/Fe2O3催化剂在CO低温氧化中的催化活性   总被引:4,自引:4,他引:4  
制备了过渡金属氧化物分散的金催化剂,考察了该催化剂在CO低温氧化中的催化活性及其制备条件,如过渡金属氧化物的选择、沉淀剂、催化剂的预处理温度及处理时间、金含量、Cl- 、催化剂制备方法及催化剂前体等因素对催化活性的影响。最佳结果显示: 以K2CO3 为沉淀剂、采用共沉淀法制备的1 % Au/Fe2O3 催化剂,可使空气中含1% 的CO在257K的低温下完全转化成CO2 。  相似文献   

18.
乙烷部分氧化超细Fe-Mo-O催化剂的研究   总被引:2,自引:2,他引:2  
采用溶胶-凝胶法制备了Fe-Mo-O催化剂,用XRD、TEM、BET、IR、TPR、TPD和微反等技术研究了催化剂晶体结构、表面构造、晶格氧活泼性、化学吸附和乙烷部分氧化反应性能。Fe-Mo-O复合氧化物催化剂是由超细微粒组成,微粒粒径约10 nm~20 nm,比表面积为48.1 m2/g。催化剂表面由Lewis碱位(Mo=O键的端氧和Fe-O-Mo键中的桥氧)及Lewis酸位构成。乙烷能以甲基中的H原子吸附在催化剂表面Lewis碱位Mo=O的端氧上形成分子吸附态,其部分氧化产物主要是C2H4和少量的CH3CHO。  相似文献   

19.
Ni/Al2O3催化剂上甲烷部分氧化制合成气   总被引:17,自引:5,他引:17  
本研究了Ni/Al2O3催化剂的表面特征以及其与CH4部分氧化制合成气反应性能的关系。TPR,XRD和评价结果表明,催化剂Ni组分含量在9.0%时反应性能最佳,反应过程中催化剂表面上部有部分镍氧化物在520~540℃就还原,反应条件实验表明,在11.52×10^5 ml.g^-1下,随着反应管外控制温度的升高,CH4转化率,CO和H2选择性及收率增加,在700℃下,随着原料气空速的增加,CH4转  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号