首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present study describes the construction of a Rhodobacter sphaeroides light-harvesting (LH2) mutant in which the charged residue βSLys23 is changed by site-directed mutagenesis to a Gin residue, and the characterization of the resulting mutant complex by a range of spectroscopic techniques. In the 77 K absorption spectrum of the mutant, the peak equivalent to the 850 nm peak in the wild-type membrane is blue-shifted by approximately 18 nm to 837 nm; except for this blue-shift, the 77 K. fluorescence excitation and emission spectra and the circular dichroism spectrum of the mutant are very similar to the equivalent spectra from the wild-type membranes, suggesting that the mutation βLys23 → Gin probably does not cause any major changes in the conformation or aggregation state of these membranes. Possible causes of the 18 nm blue-shift in the absorption spectrum are discussed.  相似文献   

2.
Interaction of anions with thiourea-linked acridinedione fluorophore was studied by absorption, (1)H NMR, steady-state and time-resolved fluorescence techniques. Addition of AcO(-) and H(2)PO(4)(-) shows a genuine H-bonded complex with thiourea receptor; whereas, F(-) shows stepwise H-bonding and deprotonation of thiourea NH as confirmed by (1)H NMR titration. Free receptor 1 shows emission maximum at 418 nm; whereas, H-bonded complex of 1·F(-) shows a new redshifted emission maximum at 473 nm and the deprotonated 1 exhibits an emission peak at 502 nm. Presence of these three different emitting species was probed by 3D emission spectroscopic studies. Equilibrium between the free receptor 1, 1·F(-) H-bonded complex and deprotonated 1 was confirmed by time-resolved fluorescence studies. Time-resolved area normalised emission spectra (TRANES) of 1 in the presence of F(-) shows two isoemissive points at 456 and 479 nm between time delays of 0-0.5 ns and 1-20 ns, respectively, due to the existence of three emitting species in equilibrium. Observation of such an equilibrium based on fluorescence spectroscopic studies further proves the earlier reported absorption and (1)H NMR spectroscopic studies of H-bonding and deprotonation processes and also illustrates the dynamics of anion-receptor interactions.  相似文献   

3.
The excited-state processes of protochlorophyllide a, the precursor of chlorophyll a in chlorophyll biosynthesis, are studied using picosecond time-resolved fluorescence spectroscopy. Following excitation into the Soret band, two distinct fluorescence components, with emission maxima at 640 and 647 nm, are observed. The 640 nm emitting component appears within the time resolution of the experiment and then decays with a time constant of 27 ps. In contrast, the 647 nm emitting component is built up with a 3.5 ps rise time and undergoes a subsequent decay with a time constant of 3.5 ns. The 3.5 ps rise kinetics are attributed to relaxations in the electronically excited state preceding the nanosecond fluorescence, which is ascribed to emission out of the thermally equilibrated S(1) state. The 27 ps fluorescence, which appears within the experimental response of the streak camera, is suggested to originate from a second minimum on the excited-state potential-energy surface. The population of the secondary excited state is suggested to reflect a very fast motion out of the Franck-Condon region along a reaction coordinate different from the one connecting the Franck-Condon region with the S(1) potential-energy minimum. The 27 ps-component is an emissive intermediate on the reactive excited-state pathway, as its decay yields the intermediate photoproduct, which has been identified previously (J. Phys. Chem. B 2006, 110, 4399-4406). No emission of the photoproduct is observed. The results of the time-resolved fluorescence study allow a detailed spectral characterization of the emission of the excited states in protochlorophyllide a, and the refinement of the kinetic model deduced from ultrafast absorption measurements.  相似文献   

4.
The synthesis of multichromophoric perylene bisimide-calix[4]arene arrays with up to five perylene units (containing orange, violet, and green perylene bisimide chromophores) and of monochromophoric model compounds was achieved by subsequent imidization of mono-Boc functionalized calix[4]arene linkers with three different types of perylene bisimide dye units. The optical properties of all compounds were studied with UV/vis absorption and steady state and time-resolved fluorescence spectroscopy. Upon excitation of the inner orange dye at 490 nm of array 3, strong fluorescence emission of the outer green perylene bisimide (PBI) chromophore at 744 nm is observed. The fluorescence excitation spectra of compounds 3 and 4 (lambdadet = 850 nm) show all absorption bands of the parent chromophores (e.g., all perylene units contribute to the emission from S1 state of the green PBI). Thus, the fluorescence emission and excitation spectra as well as time-resolved data of fluorescence lifetimes in the absence (tauD = 5.1 ns) and in the presence of an acceptor (tauDA = 0.8 ns) suggest efficient energy transfer processes between the perylene bisimide dye units. For the bichromophoric array 4, the energy transfer rate is calculated to a value of 1.05 x 109 s-1. These results demonstrate highly efficient energy transfer in cofacially assembled dye arrays.  相似文献   

5.
The absorption and emission behavior of flavin mononucleotide (FMN) in the light-, oxygen- and voltage-sensitive (LOV) domain LOV1 of the photoreceptor Phot1 from the green alga Chlamydomonas reinhardtii was studied. The results from the wild-type (LOV1-WT) were compared with those from a mutant in which cysteine 57 was replaced by serine (LOV1-C57S), and with free FMN in aqueous solution. A fluorescence quantum yield of phi(F) = 0.30 and a fluorescence lifetime of tau(F) = 4.6 ns were determined for FMN in the mutant LOV1-C57S, whereas these quantities are reduced to about phi(F) = 0.17 and tau(F) = 2.9 ns for LOV1-WT, indicating an enhanced intersystem crossing in LOV1-WT because of the adjacent sulfur of C57. A single-exponential fluorescence decay was observed in picosecond laser time-resolved fluorescence measurements for both LOV1-WT and LOV1-C57S as expected for excited singlet state relaxation by intersystem crossing and internal conversion. An excitation intensity dependent fluorescence signal saturation was observed in steady-state fluorescence measurements for LOV1-WT, which is thought to be because of the formation of a long-lived intermediate flavin-C(4a)-cysteinyl adduct in the triplet state (few microseconds triplet lifetime, adduct lifetime around 150 s). No photobleaching was observed for LOV1-C57S, because no thiol group is present in the vicinity of FMN for an adduct formation.  相似文献   

6.
An absorption and emission spectroscopic characterisation of the combined wild-type LOV1-LOV2 domain string (abbreviated LOV1/2) of phot from the green alga Chlamydomonas reinhardtii is carried out at pH 8. A LOV1/2-MBP fusion protein (MBP=maltose binding protein) and LOV1/2 with a His-tag at the C-terminus (LOV1/2-His) expressed in an Escherichia coli strain are investigated. Blue-light photo-excitation generates a non-fluorescent intermediate photoproduct (flavin-C(4a)-cysteinyl adduct with absorption peak at 390 nm). The photo-cycle dynamics is studied by dark-state absorption and fluorescence measurement, by following the temporal absorption and emission changes under blue and violet light exposure, and by measuring the temporal absorption and fluorescence recovery after light exposure. The fluorescence quantum yield, phi(F), of the dark adapted samples is phi(F)(LOV1/2-His) approximately 0.15 and phi(F)(LOV1/2-MBP) approximately 0.17. A bi-exponential absorption recovery after light exposure with a fast (in the several 10-s range) and a slow component (in the near 10-min range) are resolved. The quantum yield of photo-adduct formation, phi(Ad), is extracted from excitation intensity dependent absorption measurements. It decreases somewhat with rising excitation intensity. The behaviour of the combined wildtype LOV1-LOV2 double domains is compared with the behaviour of the separate LOV1 and LOV2 domains.  相似文献   

7.
Abstract— The fluorescence decay kinetics of photosynthetic mutants of Chlamydomonas reinhardii which lack photosystem II (PS II), photosystem I (PS I), and both PS II and PS I have been measured. The PS II mutant strain8–36C exhibits fluorescence decay lifetime components of 53, 424 and 2197 ps. The fluorescence decay of a PS I mutant strain12–7 contains two major fluorescence decay components with lifetimes of 152 and 424 ps. The fluorescence decay of mutant strain C2, which lacks both PS II and PS I, is nearly single exponential with a lifetime of 2561 ± 222 ps. In simulations in which it is assumed that wild-type decays are a simple sum of the major decay components of the isolated parts of the photosynthetic unit as measured in the mutants, curves are obtained that fit the wild-type C. reinhardii fluorescence decay data when the absorption cross-sections of PS II and PS I are weighted approximately equally. The 89 ps lifetime component in the wild-type is an average of 53 and 152 ps components arising from excitation transfer to and trapping in PS I and PS II. The single step transfer time in PS I is estimated to be between 100 and 700 fs depending on assumptions about array size. We find that between two and four visits to the PS I reaction center are required before final trapping.  相似文献   

8.
A novel zinc phthalocyanine containing four 17-crown-5 ether voids(17C5ZnPc) has been synthesized and characterized. UV-visible absorption and fluorescence emission spectra and as-sociated photophysical parameters have been determined. In contrast to most of the crown ether substituted phthalocyanines, no cofacial dimer formation is observed in the presence of alkali metal salts. In addition to the fluorescence at 710 nm from S1, a strong upper excited state (Soret 52) emission around 424 nm has been detected for the first time in the phthalocyanine series. Fluorescence decay of S1 and S2 emission can be analyzed by mono- and biexponential fits respectively. X-ray structure analysis showed that the crown ether unit is conformationally deformed and oblate that may account for the unusual spectroscopic properties.  相似文献   

9.
以萘酰亚胺结构为荧光发色团,设计开发了一种含C=C双键的、具有分子内电荷转移(ICT)效应的新型水溶性优化的次氯酸荧光探针3-(2-氰基丙烯酸乙酯基)-4-羟基-N-正丙基-1,8-萘酰亚胺(NAEC).添加次氯酸后,探针分子NAEC中的C=C双键被氧化,生成醛基,探针NAEC原有的ICT效应被破坏,产生荧光信号.经核磁、质谱、荧光发射光谱和UV-Vis吸收光谱对其结构和检测性能进行了研究.结果表明,在pH=7.4的N,N-二甲基甲酰胺(DMF)/磷酸缓冲盐溶液(PBS)(V∶V=1∶19)缓冲体系中,探针NAEC可在10s内完成对次氯酸的检测,荧光分析检测限为2.4nmol/L,斯托克斯位移为100nm;探针NAEC显示出较强的抗干扰性,能在其他活性氧、小分子生物硫醇及常见阴离子等22种干扰物存在下完成次氯酸的专一检测.同时,该探针分子的膜透性与生物相容性良好,具备较好的活体内源性ClO-荧光成像能力,在生物检测及环境监控等领域具有良好的应用前景.  相似文献   

10.
The spectroscopic characteristics of BLUF (BLUF = sensor of blue light using flavin) domain containing soluble adenylate cyclase (nPAC = Naegleria photo-activated cyclase) samples from the amoeboflagellate Naegleria gruberi NEG-M strain is studied at room temperature. The absorption and fluorescence spectroscopic development in the dark was investigated over two weeks. Attenuation coefficient spectra, fluorescence quantum distributions, fluorescence quantum yields, and fluorescence excitation distributions were measured. Thawing of frozen nPAC samples gave solutions with varying protein nano-cluster size and varying flavin, tyrosine, tryptophan, and protein color-center emission. Protein color-center emission was observed in the wavelength range of 360-900 nm with narrow emission bands of small Stokes shift and broad emission bands of large Stokes shift. The emission spectra evolved in time with protein nano-cluster aging.  相似文献   

11.
以2,6-二甲基吡啶-3,5-二甲酸二乙酯为起始原料,经N-溴代丁二酰亚胺(NBS)溴代、亲电取代反应合成了时间分辨荧光免疫分析双功能螯合剂2,6-{N,N′,N,N′-[二(2,2′-联吡啶-6,6′-二甲基)]二(氨甲基)}-吡啶-3,5-二羧酸二乙酯。经差热分析仪(DTA)、傅里叶变换红外光谱仪(FTIR)、核磁共振波谱仪(1 H NMR)、质谱仪(MS)等技术手段表征确认了化合物结构和性能。对该化合物与铕离子形成螯合物的荧光性质研究表明:激发光谱波长范围较宽,激发峰值为322nm;荧光发射峰为597nm(~5D_0-~7F_1)、618nm(~5D_0-~7F_2);荧光寿命为918μs;量子产率Φ=0.249。  相似文献   

12.
Time-dependent reorientations of resorcinol-based acridinidione (ADR) dyes in glycerol were studied using steady-state and time-resolved fluorescence studies. The difference between fluorescence anisotropy decays recorded at 460 nm when exciting at 250 nm and those obtained when exciting at 394 nm are reported. When exciting at 394 nm, the fluorescence anisotropy decay is bi-exponential, while on exciting at 250 nm a mono-exponential fluorescence anisotropy decay is observed. We interpret this in terms of different directions of the absorption dipole at 394 and 250 nm with the emission dipole respectively, which is experimentally validated and further analysed as a prolate model of ellipsoid.  相似文献   

13.
Host/guest interactions of cyclophane/anthracene (C/A) and cyclophane/9-fluorenone (C/F) complexes in dichloromethane, where the cyclophane molecule is the host, are investigated. The stability constants, log Ka, for the C/A and C/F complexes are determined by absorption and fluorescence spectroscopy. For the C/A system, log Ka is 4.2±0.2 as determined from absorption (at 325 nm) and emission (at 382, 403 and 427 nm) spectroscopic data. The analogous measurements yield 3.6±0.2 from absorption (at 309 nm) and emission (at 505 nm) spectroscopic data for the C/F system. Heats of formation of these complexes were determined by measuring the complex association constants at 25, 29 and 32 °C. These results reveal that binding of the anthracene guest by this cyclophane molecule is thermodynamically favored over that for a 9-fluorenone guest. Excited state lifetimes of these systems are also determined.  相似文献   

14.
The photophysics of mixed aggregates of GaSe/InSe nanoparticles have been studied using static and time-resolved absorption and emission spectroscopies. The results indicate that the GaSe/InSe interfaces form heterojunctions and exhibit photoinduced direct charge transfer from the GaSe valence band to the InSe conduction band. This results in the electrons and holes being localized separately in these two types of nanoparticles. The energy diagram of the nanoparticle heterojunction can be constructed from the static spectra, known bulk band offsets, and quantum confinement effects. These considerations accurately predict the energy of the observed charge-transfer band. Photoexcitation also produces excitons in the aggregates, away from the heterojunctions. These excitons can undergo diffusion and quench upon reaching a heterojunction. Time-resolved fluorescence kinetics can be modeled to extract an exciton diffusion coefficient. A value of 2.0 nm2/ns is obtained, which is in good agreement with values obtained from previous fluorescence anisotropy decay measurements.  相似文献   

15.
A linker-contained R-phycoerythrin (R-PE) complex was obtained by the Sephadex G-150 column chromatography from the Polysiphonia urceolata phycobilisome (PBS) that was dis-associated at 37 degrees C for 6 h in the dilute phosphate buffer (pH 7.0) with 5% (m/v) sodium dodecyl sulfate (SDS). The R-PE complex showed three absorption peaks at 498, 538 and 567 nm, and a fluorescence emission maximum at 578 nm. Polypeptide analysis of the complex by the 8-25% (m/v) gradient SDS-polyacrylamide gel electrophoresis demonstrated that it contained three red subunits, alpha(PE)(17.6),beta(PE)(19.2) and gamma(PE)(31.0), and a colorless 35.3 kDa rod-linker L(R)(35.3). Polypeptide proportion of the complex demonstrated that it was a hexamer in aggregate form gamma(PE)(31.6), (alpha(PE)(17.6),beta(PE)(19.2))(3)L(R)(35.3)(alpha(PE)(17.6),beta(PE)(19.2)(3)gamma(PE)(31.6) which is proposed to originate from a rod assembly of hexamer-linker-hexamer the substructure alpha(PE)(17.6),beta(PE)(19.2)(3) of which was decomposed off from the ends of the assembly during the PBS dissociation. The distinctive stability of the prepared hexamer is attributed to a large extent to the electrostatic interaction among its polypeptides, but not to the hydrophobic interaction.  相似文献   

16.
Photoinduced excited state dynamical processes in quinine sulphate dication (QSD) have been studied over a wide range of solute concentrations using steady state and nanosecond time-resolved fluorescence spectroscopic techniques. The edge excitation red shift (EERS) of emission maximum, emission wavelength dependence of fluorescence lifetimes and the time dependence of emission maximum are known to occur due to the solvent relaxation process. With increase in solute concentration, the emission spectrum shifts towards the lower frequencies accompanied with decrease in fluorescence intensity, however, absorption spectrum remains unchanged. A decrease in EERS, fluorescence lifetimes, time dependent fluorescence Stokes shift (TDFSS), fluorescence polarization and the solvent relaxation time (τr) is observed with the increase in solute concentration. The process of energy migration among the QSD ions along with solvent relaxation has been found responsible for the above experimental findings.  相似文献   

17.
A linear and nonlinear optical spectroscopic characterization is carried out on three azo dyes (Reactive orange 1, Reactive violet 8, and Acidproof purplish red), and on N-(p-hydroxybenzylidene)-diamino-maleonitrile. Fluorescence quantum distributions, fluorescence quantum yields, and fluorescence lifetimes are measured. The saturable absorption is studied by nonlinear transmission measurements with intense picosecond laser pulses. The ground-state absorption recovery is studied by picosecond time-resolved pump and probe measurements. Absolute ground-state absorption cross-sections, excited-state absorption cross-sections, and dye concentrations are extracted from saturable absorption studies. The azo dyes have fluorescence lifetimes and ground-state absorption recovery times of around 2 ps and their excited-state absorption cross-sections are small (measured at 527 nm) making them good mode-locking dyes for picosecond and femtosecond lasers. The investigated diamino-maleonitrile dye exhibits sub-picosecond fluorescence lifetime and slow ground-state absorption recovery (>1 ns).  相似文献   

18.
Steady-state and time-resolved fluorescence measurements have been made of human and rabbit lens epithelial cells and their total soluble protein. Excitation at 350 nm results in broad fluorescence spectra peaking at 450 nm and stretching into the visible past 650 nm. The fluorescence excitation spectra peak around 350 nm. We assign the species responsible for this absorption and fluorescence as NADPH. Because the absorption of near-UV light (300-400 nm) is responsible for cell damage and death, we postulate that excited states of NADPH are implicated in the mechanisms of cell damage. Preirradiation with 355 nm light leads to a loss of NADPH fluorescence but with no change in decay kinetics. Possible mechanisms for cell damage are explored.  相似文献   

19.
The neutral form of the chromophore in wild-type green fluorescent protein (wtGFP) undergoes excited-state proton transfer (ESPT) upon excitation, resulting in characteristic green (508 nm) fluorescence. This ESPT reaction involves a proton relay from the phenol hydroxyl of the chromophore to the ionized side chain of E222, and results in formation of the anionic chromophore in a protein environment optimized for the neutral species (the I* state). Reorientation or replacement of E222, as occurs in the S65T and E222Q GFP mutants, disables the ESPT reaction and results in loss of green emission following excitation of the neutral chromophore. Previously, it has been shown that the introduction of a second mutation (H148D) into S65T GFP allows the recovery of green emission, implying that ESPT is again possible. A similar recovery of green fluorescence is also observed for the E222Q/H148D mutant, suggesting that D148 is the proton acceptor for the ESPT reaction in both double mutants. The mechanism of fluorescence emission following excitation of the neutral chromophore in S65T/H148D and E222Q/H148D has been explored through the use of steady state and ultrafast time-resolved fluorescence and vibrational spectroscopy. The data are contrasted with those of the single mutant S65T GFP. Time-resolved fluorescence studies indicate very rapid (< 1 ps) formation of I* in the double mutants, followed by vibrational cooling on the picosecond time scale. The time-resolved IR difference spectra are markedly different to those of wtGFP or its anionic mutants. In particular, no spectral signatures are apparent in the picosecond IR difference spectra that would correspond to alteration in the ionization state of D148, leading to the proposal that a low-barrier hydrogen bond (LBHB) is present between the phenol hydroxyl of the chromophore and the side chain of D148, with different potential energy surfaces for the ground and excited states. This model is consistent with recent high-resolution structural data in which the distance between the donor and acceptor oxygen atoms is < or = 2.4 A. Importantly, these studies indicate that the hydrogen-bond network in wtGFP can be replaced by a single residue, an observation which, when fully explored, will add to our understanding of the various requirements for proton-transfer reactions within proteins.  相似文献   

20.
使用时间分辨荧光方法,结合紫外吸收光谱和稳态荧光光谱技术,测量了LicT蛋白中色氨酸残基的荧光动力学特性,进而对LicT蛋白质激活前后的局部微环境和结构变化进行了研究。LicT蛋白质的激活态使得有关糖类利用的基因转录过程继续进行,促进机体新陈代谢。通过色氨酸残基的荧光发射和寿命的差异判断出激活型蛋白AC 141和野生型蛋白Q 22不同的结构性质和微环境差异。在此基础上,通过衰减相关光谱(DAS)和时间分辨发射光谱(TRES)阐释了两种蛋白色氨酸残基和溶剂的相互作用,说明了激活型AC 141的比野生型Q 22的结构更加紧密。此外,TRES还说明了蛋白中的色氨酸残基存在连续光谱弛豫过程。各向异性结果则对残基和整个蛋白的构象运动进行了阐述,说明了色氨酸残基在蛋白质体系内有独立的局部运动,且在激活型蛋白中该运动更加强烈。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号