首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Several studies have appeared in the past two years reporting that the continuum emission produced by the laser ablation of solid materials is strongly polarized. In a paper that appears to conflict with these findings, Asgill et al. report that they did not observe a significant amount of polarization produced by nanosecond laser excitation of nitrogen gas and laser ablation of copper and steel ( M.E. Asgill, H.Y. Moon, N. Omenetto, D.W. Hahn, Investigation of polarization effects for nanosecond laser-induced breakdown spectroscopy, Spectrochim. Acta Part B (2010) xxx-xxx [7]). Here we show that the apparent discrepancy is resolved when laser fluence and polarization are taken into account. Using a 532 nm Nd:YAG laser to ablate Al samples in air, we find that the degree of polarization, P, of the continuum is greater for s- vs. p-polarized excitation and that P decreases with increasing fluence. We show that P would be < 10% under the conditions of Asgill et al., whereas P > 60% is obtained at low fluences with s-polarized excitation. We also confirm that at high fluence the polarization of the discrete emission is much smaller than that of the continuum.  相似文献   

2.
As applications for laser-induced breakdown spectroscopy (LIBS) become more varied with a greater number of field and industrial LIBS systems developed and as the technique evolves to be more quantitative that qualitative, there is a more significant need for LIBS systems capable of analysis with the use of a single laser shot. In single-shot LIBS, a single laser pulse is used to form a single plasma for spectral analysis. In typical LIBS measurements, multiple laser pulses are formed and collected and an ensemble-averaged method is applied to the spectra. For some applications there is a need for rapid chemical analysis and/or non-destructive measurements; therefore, LIBS is performed using a single laser shot. This article reviews in brief several applications that demonstrate the applicability and need for single-shot LIBS.  相似文献   

3.
We report what we believe to be the first demonstration of the detection of trace quantities of helium and argon in binary and ternary gas mixtures with nitrogen by laser-induced breakdown spectroscopy (LIBS). Although significant quenching of helium transitions due to collisional deactivation of excited species was observed, it was found that losses in analytical sensitivity could be minimized by increasing the laser irradiance and decreasing the pressure at which the analyses were performed. In consequence, limits of detection of parts-per-million and tens of parts-per-million and linear dynamic ranges of several orders of magnitude in analyte concentration were obtained. The results of this study suggest that LIBS may have potential applications in the detection of other noble gases at trace concentrations.  相似文献   

4.
The paper describes past and present efforts in modeling of laser-induced plasma and overviews plasma diagnostics carried out by pump-probe techniques. Besides general information on existing plasma models, the emphasis is given to models relevant to spectrochemical analysis, i.e. models of radiating plasma. Special attention is paid to collisional-radiative (CR) and collisional-dominated (CD) plasma models where radiative processes play an important role. Also, calibration-free (CF) models are considered which may endow with the possibility for standardless spectroscopic analysis. In the diagnostic part, only methods based on the use of additional diagnostic tools (auxiliary lasers, optics, and probes) are described omitting those based on plasma own radiation. A short review is provided on image-based diagnostics (shadowgraphy, schlieren, and interferometry), absorption and fluorescence, Langmuir probe, and less frequently used cavity ringdown and Thomson scattering methods.  相似文献   

5.
The high sensitivity of laser-induced breakdown spectroscopy (LIBS) for the detection of most of the fly ash components enables the analysis of these residues produced during the combustion of coal. Fly ash consists of oxides (SiO2, Al2O3, Fe2O3, CaO…) and unburnt carbon which is the major determinant of combustion efficiency in coal fired boilers. For example, an excessive amount of residual carbon dispersed in the fly ash means a significant loss of energy (Styszko et al., 2004 [1]). Standard methods employed for the analysis of fly ash make not possible a control of boiler in real time. LIBS technique can significantly reduce the time of analysis, in some cases even an online detection can be performed. For this reason, some studies have been addressed in order to demonstrate the capability of the laser-induced breakdown spectroscopy technique for the detection of carbon content in high pressure conditions typical of thermal power plants (Noda et al., 2002 [2]) and for the monitoring of unburnt carbon for the boiler control in real time (Kurihara et al., 2003[3]).In particular, the content of unburnt carbon is a valuable indicator for the control of fly ash quality and for the boiler combustion. Depending on this unburnt carbon content, fly ash can be disposed as an industrial waste or as a raw material for the production of concrete in the construction sector. In this study, analyses were performed on specimens of various forms of preparation. Pressed pellets were prepared with two different binders. Presented results concern the nature and amount of the binder used to pelletize the powder, and the laser-induced breakdown spectroscopy parameters and procedure required to draw calibration curves of elements from the fly ash. Analysis “on tape” was performed in order to establish the experimental conditions for the future “online analysis”.  相似文献   

6.
Laser-induced breakdown spectroscopy (LIBS) in the vacuum ultraviolet range (VUV, λ < 200 nm) is employed for the detection of trace elements in polyethylene (PE) that are difficult to detect in the UV/VIS range. For effective laser ablation of PE, we use a F2 laser (wavelength λ = 157 nm) with a laser pulse length of 20 ns, a pulse energy up to 50 mJ, and pulse repetition rate of 10 Hz. The optical radiation of the laser-induced plasma is measured by a VUV spectrometer with detection range down to λ = 115 nm. A gated photon-counting system is used to acquire time-resolved spectra. From LIBS measurements of certified polymer reference materials, we obtained a limit of detection (LOD) of 50 µg/g for sulphur and 215 µg/g for zinc, respectively.The VUV LIBS spectra of PE are dominated by strong emission lines of neutral and ionized carbon atoms. From time-resolved measurements of the carbon line intensities, we determine the temporal evolution of the electronic plasma temperature, Te. For this, we use Saha–Boltzmann plots with the electron density in the plasma, Ne, derived from the broadening of the hydrogen H-α line. With the parameters Te and Ne, we calculate the intensity ratio of the atomic sulphur and carbon lines at 180.7 nm and at 175.2 nm, respectively. The calculated intensity ratios are in good agreement with the experimentally measured results.  相似文献   

7.
A quantitative comparison of the performance of four different laser-induced breakdown spectroscopy detection systems is presented. The systems studied are an intensified photodiode array coupled with a Czerny–Turner spectrometer, an intensified CCD coupled with a Czerny–Turner spectrometer, an intensified CCD coupled to an Echelle spectrometer, and a prototype multichannel compact CCD spectrometer system. A simple theory of LIBS detection systems is introduced, and used to define noise-equivalent spectral radiance and noise-equivalent integrated spectral radiance for spectral detectors. A detailed characterization of cathode noise sources in the intensified systems is presented.  相似文献   

8.
In most instances, laser-induced breakdown spectroscopy (LIBS) spectra are obtained through analog accumulation of multiple shots in the spectrometer CCD. The average acquired in the CCD at a given wavelength is assumed to be a good representation of the population mean, which in turn is implicitly regarded to be the best estimator for the central value of the distribution of the spectrum at the same wavelength. Multiple analog accumulated spectra are taken and then in turn averaged wavelength-by-wavelength to represent the final spectrum. In this paper, the statistics of single-shot and analog accumulated LIBS spectra of both solids and liquids were examined to evaluate whether the spectrum averaging approach is statistically defensible. At a given wavelength, LIBS spectra are typically drawn from a Frechet extreme value distribution, and hence the mean of an ensemble of LIBS spectra is not necessarily an optimal summary statistic. Under circumstances that are broadly general, the sample mean for LIBS data is statistically inconsistent and the central limit theorem does not apply. This result appears to be due to very high shot-to-shot plasma variability in which a very small number of spectra are high in intensity while the majority are very weak, yielding the extreme value form of the distribution. The extreme value behavior persists when individual shots are analog accumulated. An optimal estimator in a well-defined sense for the spectral average at a given wavelength follows from the maximum likelihood method for the extreme value distribution. Example spectra taken with both an Echelle and a Czerny–Turner spectrometer are processed with this scheme to create smooth, high signal-to-noise summary spectra. Plasma imaging was used in an attempt to visually understand the observed variability and to validate the use of extreme value statistics. The data processing approach presented in this paper is statistically reliable and should be used for accurate comparisons of LIBS spectra instead of arithmetic averaging on either complete or censored data sets.  相似文献   

9.
The suitability of laser-induced breakdown spectroscopy (LIBS) for the characterization of jewellery products is demonstrated by the development of a method based on the use of an Nd-YAG laser (operating at 532 nm) which induces ablation of the material and the production of a plasma whose emission reaches 1/8 m spectrograph (connected to a coupled charge detector (CCD)) through an optic fiber. The treatment of the instrumental signal provides enough analytical information, both for identifying and quantifying the major metals present in this type of material. The method proposed has been developed both by multivariate optimization and calibration procedures with application of the appropriate quality criteria. The chemometric analysis of the data and the use of PLS regression for calibration guarantee the ruggedness of the proposed method. The study of the emission spectra allows characterization of the most common noble metals (gold and silver) as well as other metals present in jewellery pieces.  相似文献   

10.
A large suite of natural carbonate, fluorite and silicate geological materials was studied using laser-induced breakdown spectroscopy (LIBS). Both single- and double-pulse LIBS spectra were acquired using close-contact benchtop and standoff (25 m) LIBS systems. Principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to identify the distinguishing characteristics of the geological samples and to classify the materials. Excellent discrimination was achieved with all sample types using PLS-DA and several techniques for improving sample classification were identified. The laboratory double-pulse LIBS system did not provide any advantage for sample classification over the single-pulse LIBS system, except in the case of the soil samples. The standoff LIBS system provided comparable results to the laboratory systems. This work also demonstrates how PCA can be used to identify spectral differences between similar sample types based on minor impurities.  相似文献   

11.
In the present work we demonstrate a fiber-optic laser-induced breakdown spectroscopy (FO LIBS) system for delivering laser energy to a sample surface to produce a spark as well as to collect the resulting radiation from the laser-induced spark. In order to improve the signal/background (S/B) ratio, various experimental parameters, such as laser energy, gate delay and width, detector gain, lenses of different focal lengths and sample surface, were tested. In order to provide high reliability and repeatability in the analysis, we also measured plasma parameters, such as electron density and plasma temperature, and determined their influence on the measurement results. The performance of FO LIBS was also compared with that of a LIBS system that does not use a fiber to transmit the laser beam. LIBS spectra with a good S/B were recorded at 2-μs gate delay and width. LIBS spectra of six different Al alloy samples were recorded to obtain calibration data. We were able to obtain linear calibration data for numerous elements (Cr, Zn, Fe, Ni, Mn, Mg and Cu). A linear calibration curve for LIBS intensity ratio vs. concentration ratio reduces the effect of physical variables (i.e. shot-to-shot power fluctuation, sample-to-surface distance, and physical properties of the samples). Our results reveal that this system may be useful in designing a high-temperature LIBS probe for measuring the elemental composition of Al melt.  相似文献   

12.
Development and application of an in-situ applicable method to provide rapid determination of platinum group metals (platinum, palladium, and rhodium) elemental concentration in automobile catalyst scrap is reported. Application is based on laser-induced breakdown spectroscopy (LIBS). Actual automobile catalyst slurry in powder form was used to develop the application. With a method requiring approximately 1.5 min of examination per sample, calibration curves are presented with linear regression coefficients close to 0.99 and stability better than 3.0%.  相似文献   

13.
A significant parameter to monitor the status of concrete buildings like bridges or parking garages is the determination of the depth profile of the chlorine concentration below the exposed concrete surface. This information is required to define the needed volume of restoration for a construction. Conventional methods like wet chemical analysis are time- and cost-intensive so an alternative method is developed using laser-induced breakdown spectroscopy (LIBS). The idea is to deploy LIBS to analyze drill cores by scanning the sample surface with laser pulses. Chlorine spectral lines in the infrared (IR) and ultraviolet (UV)-range were studied for chlorine detection in hydrated cement samples. The excitation energies of these spectral lines are above 9.2 eV. Hence high plasma temperatures and pulse energies in the range of some hundred millijoules are needed to induce sufficient line intensity levels at the required working distance. To further increase the line intensity and to lower the detection limit (LOD) of chlorine a measuring chamber is used where different ambient pressures and gases can be chosen for the measurements. The influences on the line intensity for pressures between 5 mbar and 400 mbar using helium as process gas and the influence of different laser burst modi like single and collinear double pulses are investigated. For the first time a LOD according to DIN 32 645 of 0.1 mass% was achieved for chlorine in hydrated cement using the UV line 134.72 nm.  相似文献   

14.
Samples taken from the liquid slag layer in a vacuum degasser station of a steel works are analyzed after solidification by laser-induced breakdown spectroscopy (LIBS) without any further sample preparation. The mass fractions of the major components of the vacuum slags are in the range of 50–60% for CaO, 0.5–12% for SiO2 and 20–40% for Al2O3. The species are distributed heterogeneously in the solid samples having diameters of 35 mm. Furthermore the color and structure of the samples is varying significantly. A fast spatial averaging of representative sample areas is realized by spatial laser beam shaping. Multivariate calibration and its validation is carried out with calibration and validation sets of production samples which are analyzed by X-ray fluorescence measurements or as borate beads for reference. The laser-induced breakdown spectroscopy instrument is installed in the steel works at a distance of about 10 m from the vacuum degasser. The laser-induced breakdown spectroscopy analysis runs automatically after the sample placement and it takes 80 s including data transfer to the host computer of the steel works. Operational tests are carried out to demonstrate the feasibility of a fast slag analysis in the harsh environment of the vacuum degasser plant.  相似文献   

15.
The application of laser-induced breakdown spectroscopy (LIBS) to aerosol systems has been shown to provide quantitative analysis of particle-derived species; however, the exact nature of the plasma/particle interactions remains to be fully understood. Although the plasma/particle interaction may be idealized within a framework of instantaneous vaporization and analyte diffusion throughout the plasma volume, experimental evidence suggests that these processes actually occur on finite time scales relative to the plasma decay times at which measurements are frequently taken. In the present work, a numerical simulation of the temperature and species concentration fields of a plasma containing a single particle, including dissociation and diffusion on semi-empirical finite time scales, is developed. Using these results, the intensity of analyte emission is calculated as a function of time, and the standard ion/neutral ratios typical of aerosol-derived LIBS signals are calculated. Furthermore, the ratio of ion/neutral ratios for two different species was used to assess the temperature homogeneity of the particle-derived analytes in comparison to the overall plasma temperature field. From this numerical study, it is shown that the finite time scale of evaporation and diffusion of aerosol material results in a non-uniform spatial distribution in concentration. This results, in turn, in temperature and free electron density gradients within the plasma, leading to variation between the local conditions surrounding aerosol mass and the bulk conditions of the plasma as a whole.  相似文献   

16.
Using standard brass alloy samples, an approach to reduce the laser-induced breakdown spectroscopy measurement uncertainty was tested and proved. Two important parameters for plasma characterization, the plasma temperature and the electron density, were applied to minimize the signal uncertainties due to uncontrollable experimental parameter variations. Results show that for the pulse-to-pulse analysis, the signal fluctuations can be significantly reduced by utilizing the plasma characteristic information. The major source for the single pulse fluctuations is the redistribution of the characteristic line at different temperatures according to the Boltzmann distribution under LTE. The change of the degree of ionization also contributes to the signal fluctuations. For the multi-pulse analysis, due to the nonlinear relationship between the plasma temperature and the line intensity, it is not applicable to utilize the Boltzmann distribution to reduce the influences of the plasma properties. However, normalization with the combination of the whole spectrum area and the ratio between the ion and atom number density of the same element can further increase the measurement accuracy.  相似文献   

17.
The enhancement of emission intensity resulting from the interaction between two laser-induced plasmas on two orthogonal targets was investigated using double pulse laser-induced breakdown spectroscopy (LIBS) at 0.7 Pa, by means of time-resolved spectroscopy and fast photography. The results showed that the interaction between both plasmas improved carbon emission intensity in comparison to a single laser-induced plasma. For all the carbon lines of interest 477.2 nm (CI), 426.7 nm (CII), and 473.4 nm (C2 Swan band head), the intensity enhancement showed a maximum at a delay between lasers in the range from 2 to 5 μs; moreover it increased with the fluence of the first laser. On the other hand, in the case of C2 the intensity enhancement reached a maximum at 5 mm from the target; however it decreased with increasing fluence of the second laser. The largest intensity enhancement found was twofold for atomic species and sixfold for molecular species.  相似文献   

18.
Laser-induced breakdown spectroscopy was used to determine the elemental composition of a CeO2 composite powder for process control verification during lanthanide borosilicate glass fabrication. Cerium oxide is used as a surrogate for plutonium oxide, which along with other canister contents will be combined with frit to make glass. Laser-induced breakdown spectroscopy data for the composition of the CeO2 batch containing concentrations of Ce, Cr, Si, Fe, Ta, Ni, Zn, Al Mg, Gd, and W were quantitatively determined from laser-induced breakdown spectroscopy spectra of both pellet and powder samples. The results of both forms were compared and it was determined that the pellet data gave slightly better precision than the powder sample.  相似文献   

19.
In laser-induced breakdown spectroscopy (LIBS), plasma emission is extremely unstable because of many factors, such as the fluctuation of laser energy, inhomogeneity of sample surfaces, and variable distance between lens and samples. Therefore, the detection and correction of varying continuum background emission are not easily accomplished. The aim of this work is to present a method that can automatically estimate and correct varying continuum background emission, which is representative in laser-induced plasma. In this method, we first find all minima on a spectrum, and then deduct the unreasonable minima by a proper threshold. Finally, we use one or multiple polynomial functions through the minima left to approximate the continuum backgrounds. The validity of this method was evaluated by using several spectra with different complexities and wavelength ranges. We also applied this method to optimize the measurement time delays of detectors. In addition, for five aluminum alloy samples, we compared their elemental calibration cures between original spectra and background-corrected spectra. Experimental results proved that the method proposed in this paper can well estimate varying continuum backgrounds over a wide range of wavelengths.  相似文献   

20.
Laser-induced breakdown spectroscopy (LIBS) has been used to identify the differences or similarities between crude oil and fuel residues. Firstly, a man portable LIBS analyzer was used for the on-site environmental control and analysis of the oil spill from The Prestige. An exhaustive analysis of crude oil and oil spill residues (collected during the field campaign in the Galician Coast) was performed in the laboratory. Characteristics elements in petroleum such as C, H, N, O, Mg, Na, Fe and V were detected. In addition, contributions from Ca, Si and Al in the composition of residues have been found. The use of intensity ratios of line and band emissions in the original fuel (crude oil) and in the aged residues allowed a better characterization of the samples than the simple use of peak intensities. The chemical composition between the crude oil and the fuel residues was found completely different. As well, a statistical method was employed in order to discriminate residues. Although significant differences were observed, no conclusions in terms of age and provenance could be reached due to the unknowledgment in the origin of the samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号