首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most existing models for predicting bubble size and bubble frequency have been developed for freely bubbling fluidized beds. Accurate prediction of bubbling behavior in deep fluidized beds, however, has been a challenge due to the higher degree of bubble coalescence and break up, high probability of the slugging regime, partial fluidization, and chaotic behavior in the bubbling regime. In this work, the bubbling and fluidization behavior of potash particles was investigated in a deep fluidized bed employing a twin-plane electrical capacitance tomography (ECT) system. Solid volume fraction, average bubble velocity, average bubble diameter, and bubble frequency in both bubbling and slugging regimes were measured at two different bed height ratios (H/D = 3.5 and H/D = 3.78). This work is the first to illustrate a sequential view of bubbles at different superficial gas velocities in a fluidized bed. The results show that both the bubble diameter and rising velocity increased with increasing the superficial gas velocity for the two bed heights, with larger values observed in the deeper bed compared to the shallower one. Predicted values for bubble diameter, bubble rise velocity and bubble frequency from different models are compared with the experimental data obtained from the ECT system in this work. Good agreement has been achieved between the values predicted by the previous models and the experimental data for the bubble diameter and bubble rise velocity with an average absolute deviation of 16% and 15% for the bed height of 49 cm and 13% and 8% for the bed height of 53 cm, respectively.  相似文献   

2.
In this work, a new drag model for TFM simulation in gas-solid bubbling fluidized beds was proposed, and a set of equations was derived to determine the meso-scale structural parameters to calculate the drag characteristics of Geldart-B particles under low gas velocities. In the new model, the meso-scale structure was characterized while accounting for the bubble and meso-scale structure effects on the drag coefficient. The Fluent software, incorporating the new drag model, was used to simulate the fluidization behavior. Experiments were performed in a Plexiglas cylindrical fluidized bed consisting of quartz sand as the solid phase and ambient air as the gas phase. Comparisons based on the solids hold-up inside the fluidized bed at different superficial gas velocities, were made between the 2D Cartesian simulations, and the experimental data, showing that the results of the new drag model reached much better agreement with exoerimental data than those of the Gidasoow dra~ model did.  相似文献   

3.
鼓泡流化床因其较高的传热特性以及较好的相间接触已经被广泛应用于工业生产中,而对鼓泡流态化气固流动特性的充分认知是鼓泡流化床设计的关键.在鼓泡流化床中,气泡相和乳化相的同时存在使得床中呈现非均匀流动结构,而这种非均匀结构给鼓泡流化床的数值模拟造成了很大的误差.基于此,以气泡作为介尺度结构,建立了多尺度曳力消耗能量最小的稳定性条件,构建了适用于鼓泡流化床的多尺度气固相间曳力模型.结合双流体模型,对A类和B类颗粒的鼓泡流化床中气固流动特性进行了模拟研究,分析了气泡速度、气泡直径等参数的变化规律.研究表明,与传统的曳力模型相比,考虑气泡影响的多尺度气固相间曳力模型给出的曳力系数与颗粒浓度的关系是一条分布带,建立了控制体内曳力系数与局部结构参数之间的关系.通过模拟得到的颗粒浓度和速度与实验的比较可以发现,考虑气泡影响的多尺度曳力模型可以更好地再现实验结果.通过A类和B类颗粒的鼓泡床模拟研究发现,A类颗粒的鼓泡床模拟受多尺度曳力模型的影响更为显著.   相似文献   

4.
1. Introduction Injections of evaporative liquids into fluidized solid parti- cles are routinely practiced in industrial processes involv- ing gas-solid fluidization systems such as fluid catalytic cracking, polymerization, and plastic coating (Fan et al., 2001). In the FCC riser system, heavy oil is injected into the system to evaporate rapidly by contact with the hot catalyst particles. Simultaneously, thermal and catalytic cracking reactions take place. During a polymerization process, a …  相似文献   

5.
A numerical simulation was conducted to study the effect of pressure on bubble dynamics in a gas–solid fluidized bed. The gas flow was modeled using the continuum theory and the solid phase, by the discrete element method (DEM). To validate the simulation results, calculated local pressure fluctuations were compared with corresponding experimental data of 1-mm polyethylene particles. It was shown that the model successfully predicts the hydrodynamic features of the fluidized bed as observed in the experiments. Influence of pressure on bubble rise characteristics such as bubble rise path, bubble stability, average bubbles diameter and bubble velocity through the bed was investigated. The simulation results are in conformity with current hydrodynamic theories and concepts for fluidized beds at high pressures. The results show further that elevated pressure reduces bubble growth, velocity and stability and enhances bubble gyration through the bed, leading to change in bed flow structure.  相似文献   

6.
Supercritical water (SCW) fluidized bed is a new reactor concept for hydrogen production from biomass or coal gasification. In this paper, a comparative study on flow structure and bubble dynamics in a supercritical water fluidized bed and a gas fluidized bed was carried out using the discrete element method (DEM). The results show that supercritical water condition reduces the incipient fluidization velocity, changes regime transitions, i.e. a homogeneous fluidization was observed when the superficial velocity is in the range of the minimum fluidization velocity and minimum bubbling velocity even the solids behave as Geldart B powders in the gas fluidized bed. Bubbling fluidization in the supercritical water fluidized bed was formed after superficial velocity exceeds the minimum bubbling velocity, as in the gas fluidized bed. Bubble is one of the most important features in fluidized bed, which is also the emphasis in this paper. Bubble growth was effectively suppressed in the supercritical water fluidized bed, which resulted in a more uniform flow structure. By analyzing a large number of bubbles, bubble dynamic characteristics such as diameter distribution, frequency, rising path and so on, were obtained. It is found that bubble dynamic characteristics in the supercritical water fluidized bed differ a lot from that in the gas fluidized bed, and there is a better fluidization quality induced by the bubble dynamics in the supercritical water fluidized bed.  相似文献   

7.
Particle charge density is vitally important for monitoring electrostatic charges and understanding particle charging behavior in fluidized beds.In this paper,a dual-material probe was tested in a gas-solid fluidized bed for measuring the charge density of fluidized particles.The experiments were conducted in a two-dimensional fluidized bed with both single bubble injection and freely bubbling,at various particle charge densities and superficial gas velocities.Uniformly sized glass beads were used to eliminate complicating factors at this early stage of probe development.Peak currents,extracted from dynamic signals,were decoupled to determine charge densities of bed particles,which were found to be qualitatively and quantitatively consistent with charge densities directly measured by Faraday cup from the freely bubbling fluidized bed.The current signals were also decoupled to estimate bubble rise velocities,which were found to be in reasonable agreement with those obtained directly by analyzing video images.  相似文献   

8.
The discrete hard sphere particle model (DPM) is applied in this work to study numerically the distributions of particle and bubble granular temperatures in a bubbling fluidized bed. The dimensions of the bed and other parameters are set to correspond to those of Müller et al. (2008). Various drag models and operational parameters are investigated to find their influence on particle and bubble granular temperatures. Various inlet superficial gas velocities are used in this work to obtain their effect on flow characteristics. It is found that the superficial gas velocity has the most important effect on granular temperatures including bubble granular temperature, particle translational granular temperature and particle rotational granular temperature. The drag force model affects more seriously the large scale variables such as the bubble granular temperature. Restitution coefficient influences all granular temperatures to some degree. Simulation results are compared with experimental results by Müller et al. (2008) showing reasonable agreement.  相似文献   

9.
To study axial/radial profiles of particle velocity in the affected region of an integrated riser outlet,a cold model was developed for the integrated riser reactor combining the gas-solid distributor with the fluidized bed.Constraints,related to the gas-solid distributor and the upper fluidized bed,imposed on the particle flow in the riser outlet region,were investigated experimentally.The experimental results showed that with increasing superficial gas velocity,these constraints have strong influences on particle flow behavior,the particle circulation flux in the riser,and the height of the static bed material of the upper fluidized bed.When the constraints have greater prominence,the axial profile of the cross-sectionally averaged particle velocity in the outlet region initially increases and then decreases,the rate of decrease being proportional to the constraint strength.Along the radial direction of the outlet section,the region where the local particle velocity profile tends to decrease appears near the dimensionless radius r/R = 0.30 initially and then,with increasing constraint strength,gradually extends to the whole section from the inner wall.Based on the experimental data,an empirical model describing the constraint strength was established.The average relative error of the model is within 7.69%.  相似文献   

10.
The dynamic characteristics of a gas-solid fluidized bed with different rod promoters have been investigated in terms of bed expansion and fluctuation, minimum fluidization velocity and distributor-to-bed pressure drop ratio at minimum fluidization velocity. Experimentation based on statistical design has been carried out and model equations using factorial design of experiments have been developed for the above mentioned quantities for a promoted gas-solid fluidized bed. The model equations have been tested with additional experimental data. The system variables include four types of rod promoters of varying blockage volume, bed particles of four sizes and four initial static bed heights. A comparison between the predicted values of the output variables using the proposed model equation with their corresponding experimental ones shows fairly good agreement.  相似文献   

11.
Numerical simulation of gas-solid flow in a two-dimensional fluidized bed with an inclined jet was performed. The numerical model is based on the two-fluid model of gas and solids phase in which the solids constitutive equations are based on the kinetic theory of granular flow. The improved ICE algorithm, which can be used for both low and high-velocity fluid flow, were used to solve the model equations. The mechanism of jet formation was analyzed using both numerical simulations and experiments. The emergence and movement of gas bubbles were captured numerically and experimentally. The influences of jet velocity, nozzle diameter, nozzle inclination and jet position on jet penetration length were obtained. A semi-empirical expression was derived and the parameters were correlated from experimental data. The correlation equation, which can be easily used to obtain the inclined jet penetration length, was compared with our experimental data and published correlation equations.  相似文献   

12.
In this paper, the pressure fluctuation in a fluidized bed was measured and processed via standard deviation and power spectrum analysis to investigate the dynamic behavior of the transition from the bubbling to turbulent regime. Two types (Geldart B and D) of non-spherical particles, screened from real bed materials, and their mixture were used as the bed materials. The experiments were conducted in a semi-industrial testing apparatus. The experimental results indicated that the fluidization characteristics of the non-spherical Geldart D particles differed from that of the spherical particles at gas velocities beyond the transition velocity Uc. The standard deviation of the pressure fluctuation measured in the bed increased with the gas velocity, while that measured in the plenum remained constant. Compared to the coarse particles, the fine particles exerted a stronger influence on the dynamic behavior of the fluidized bed and promoted the fluidization regime transition from bubbling toward turbulent. The power spectrum of the pressure fluctuation was calculated using the auto-regressive (AR) model; the hydrodynamics of the fluidized bed were characterized by the major frequency of the power spectrum of the pressure fluctuation. By combining the standard deviation analysis, a new method was proposed to determine the transition velocity Uk via the analysis of the change in the major frequency. The first major frequency was observed to vary within the range of 1.5 to 3 Hz.  相似文献   

13.
The effect of bed thickness in rectangular fluidized beds is investigated through the CFD–DEM simulations of small-scale systems. Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing, bed expansion, bubble behavior, solids velocities, and particle kinetic energy. Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters. However, a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters, indicating the transition from 2D flow to 3D flow within the range of 20–40 particle diameters. Comparison of velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds. Hence, for quantitative comparison with experiments in pseudo-2D columns, the effect of walls has to be accounted for in numerical simulations.  相似文献   

14.
Scale up of gas-solid circulating fluidized bed (CFB) risers poses many challenges to researchers.In this paper,CFD investigation of hydrodynamic scaling laws for gas-solid riser flow was attempted on the basis of two-fluid model simulations,in particular,the recently developed empirical scaling law of Qi,Zhu,and Huang (2008).A 3D computational model with periodic boundaries was used to perform numerical experiments and to study the effect of various system and operating parameters in hydrodynamic scaling o...  相似文献   

15.
Pressurized fluidized beds have been developed in quite a few industrial applications because of intensified heat and mass transfer and chemical reaction. The bubble behaviors under elevated pressure, strongly influencing the fluidization and reaction conversion of the whole system, are of great research significance. In this work, the bubble behaviors of Geldart B particle in a pseudo two-dimensional (2D) pressurized fluidized bed were experimentally studied based on digital image analysis technique. The effects of pressure and fluidization gas velocity on the general bubble behaviors (i.e., size, shape and spatial distribution) and the dynamic characteristics, such as the time-evolution of voidage distribution and local flow regimes, were comprehensively investigated. Results show that increasing pressure reduces the stability of bubbles and facilitates gas passing through the emulsion phase, resulting in the “smoother” fluidization state with smaller bubbles and declined bubble fraction and standard deviation. The equivalent bubble diameter and bubble aspect ratio increase with the increasing gas velocity while decrease as pressure rises. The elevated pressure reduces bubbles extension in the vertical direction, prohibits the “short pass” of fluidization gas in large oblong bubbles/slugs and benefits the gas–solid interaction. The flow regimes variation with gas velocity is affected by the elevated pressure, and demonstrates different features in different local positions of the bed.  相似文献   

16.
Using statistically based measuring methods for the determination of local bubble size distributions and local average bubble shapes in gas fluidized beds, bubble characteristics have been measured in a fluidized bed column of 1 m diameter where quartz sand (minimum fluidizing velocity 0.0135 m/sec) was fluidized with air at velocities ranging from 0.05 to 0.30 m/sec. The results present experimental evidence that bubbles within large diameter fluidized beds do not rise completely randomly distributed in space but rather in the form of bubble chains which is in agreement with industrial operating experience in large scale fluid bed systems. Since the formation of bubble chains considerably reduces the residence time of the bubble gas this finding is of significance for the performance of fluidized bed reactors. The influence of the operating parameters on the extent of the bubble chain formation has been investigated and possible consequences of these results are discussed.  相似文献   

17.
A model for a single fully developed bubble moving in an unbounded fluidized bed is presented. The model allows bubble growth or shrinkage during the rise inside the bed, as well as dependence of the rise velocity upon specified bed parameters. Limiting cases of nearly spherical bubbles and of sufficiently large bubbles whose form resembles that of a spherical segment are considered in more detail. The form of bubbles rising in either fluidized beds or one-phase liquids, and its dependence on the effective “surface tension” acting on the bubble boundary are discussed.  相似文献   

18.
The steady-state motion of a bubble (a cavity free from suspended particles and occupied solely by the liquid phase) in a fluidized bed of uniform concentration is considered. The change in the shape of the bubble which takes place as it rises through the fluidized bed is established; the rising velocity is determined for both large and small bubbles. The basic parameter characterizing the shape of a large bubble in either a fluidized bed or a homogeneous liquid is calculated. This, in particular, enables the well-known Taylor problem of a large drop or bubble in an unlimited medium to be solved.  相似文献   

19.
An ultra-fast X-ray tomographic scanner is applied to study the hydrodynamics in a bubbling fluidized bed with and without vertical internals (e.g., heat exchanger tubes). The objective of this study is to understand the influence of vertical internals on hydrodynamic properties such as bubble volume, size and velocity and to provide measurement data for the design and scale-up of catalytic bubbling fluidized bed reactors with vertical internals. With these new measurements, correlations of bubble properties can be developed to reliably scale-up bubbling fluidized beds with vertical internals. For the investigated reactor with Geldart A/B particles, no relation between bubble size and velocity was observed for individual bubbles, i.e.; smaller bubbles tend to rise with higher velocities. A significant reduction in bubble size and sharpening of the bubble size distribution was generally obtained for a bed with vertical internals.  相似文献   

20.
Experiments were performed to investigate the wake properties of a single gas bubble in a three-dimensional liquid-solid fluidized bed via a video camera moving at the same speed as the bubble. The solids holdup in the fluidized bed varied up to around 10%. The bubble size varied from 5 to 20 mm with corresponding bubble Reynolds numbers ranging from 1000 to 6500. The bubble was observed to have two types of wake configurations depending on the bubble size: the asymmetric/helical vortex wake for small bubbles and the symmetric wake for large bubbles. The bubble shape and relative rise velocity in the fluidized bed can be well-represented by correlations developed for single bubbles in liquid media, although the bubble shape in liquid-solid media is slightly more flattened compared to that in liquid media. The bubble rocking frequency was found to be independent of particle properties and to correspond in magnitude to the vortex shedding frequency in a two-dimensional liquid-solid fluidized bed. The average primary wake size in three dimensions is comparable to that in two dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号