首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
PM2.5 samples were collected at urban, industrial and coastal sites in Tianjin during winter, spring and summer in 2007. Concentrations of elemental carbon (EC) and organic carbon (OC) were analyzed using the IMPROVE thermal-optical reflectance (TOR) method. Both OC and EC exhibited a clear seasonal pattern with higher concentrations observed in the winter than in the spring and summer, due to cooperative effect of changes in emission rates and seasonal meteorology. The concentrations of carbonaceous species were also influenced by the local factors at different sampling sites, ranking in the order of industrial〉 urban 〉 coastal during winter and spring. In the summer, the port emissions, enriched with EC, had a significant impact on carbonaceous aerosols at the coastal site. Total carbonaceous aerosol accounted for 40.0% in winter, 33.8% in spring and 31.4% in summer of PM2.5 mass. Good correlation (R = 0.84-0.93) between OC and EC indicated that they had common dominant sources of combustion such as coal burning and traffic emissions. The daily average OC/EC ratios ranged from 2.1 to 9.1, the elevated OC/EC ratios being found in the winter. The estimated secondary organic carbon (SOC) accounted for 46.9%, 35.3% and 40.2% of the total OC in the winter, spring and summer, respectively, indicating that SOC may be an important contributor to fine organic aerosol in Tianjin.  相似文献   

2.
Aerosol observation was conducted for four seasons from September 2001 to August 2002 at five sampling sites in Hangzhou, South China, on PM10 mass, 22 elements (Na, Mg, AI, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As. Se, Br, Cd, Ba, and Pb), 5 major ions (F^-, Cl^ , NO3^-, SO4^2- , and NH4^+), and organic and elemental carbon (OC and EC), showing that PM10 mass ranged from 46.7 to 270.8 μg/m^3, with an annual average of 119.2 μg/m^3. Na, AI, Si, S, K, Ca, and Fe were the most abundant elements in PM10, most of S being in the form of SO4^2- . SO4^2-, NO3^-, and NH4^+ were the major ions, which contributed to about 20% of the PM10 mass. The mean seasonal concentrations for SO4^2- , averaged over all sites, were found to be 18.0, 18.5, 24,Z and 21.4 μg/m^3, for spring, summer, autumn, and winter, respectively, while the corresponding loadings for NO3^- were 7.2, 4.7, 7.1, and 11.2 μg/m^3, and for NH4^+ were 6.0, 5.9, 8.2, and 9.3 μg/m^3, in the form mostly of NH4NO3 in spring, autumn, and winter, and mostly of (NH4)2SO4 in summer. The low NO3^-/SO4^2- ratio found indicates coal combustion as the major source throughout the year. The mean annual concentrations of OC and EC in PM10 were found to be 21.4, and 4.1 μg/m^3, respectively. Material balance calculation indicated that fugitive dust, the secondary aerosol, and carbonaceous matter were the most abundant species in PM10 for the four seasons, as is characteristic for cities in South China.  相似文献   

3.
Fine particulate matter (PM2.5) samples were collected over two years in Xi’an, China to investigate the relationships between the aerosol composition and the light absorption efficiency of black carbon (BC). Real-time light attenuation of BC at 880 nm was measured with an aethalometer. The mass concentrations and elemental carbon (EC) contents of PM2.5 were obtained, and light attenuation cross-sections (σATN) of PM2.5 BC were derived. The mass of EC contributed ∼5% to PM2.5 on average. BC σATN exhibited pronounced seasonal variability with values averaging 18.6, 24.2, 16.4, and 26.0 m2/g for the spring, summer, autumn, and winter, respectively, while averaging 23.0 m2/g overall. σATN varied inversely with the ratios of EC/PM2.5, EC/[SO42−], and EC/[NO3]. This study of the variability in σATN illustrates the complexity of the interactions among the aerosol constituents in northern China and documents certain effects of the high EC, dust, sulfate and nitrate loadings on light attenuation.  相似文献   

4.
Zhengzhou is a developing city in China, that is heavily polluted by high levels of particulate matter. In this study, fine particulate matter (PM2.5) was collected and analyzed for their chemical composition (soluble ions, elements, elemental carbon (EC) and organic carbon (OC)) in an industrial district of Zhengzhou in 2010. The average concentrations of PM2.5 were 181, 122, 186 and 211 μg/m3 for spring, summer, autumn and winter, respectively, with an annual average of 175 μg/m3, far exceeding the PM2.5 regulation of USA National Air Quality Standards (15 μg/m3). The dominant components of PM2.5 in Zhengzhou were secondary ions (sulphate and nitrate) and carbon fractions. Soluble ions, total carbon and elements contributed 41%, 13% and 3% of PM2.5 mass, respectively. Soil dust, secondary aerosol and coal combustion, each contributing about 26%, 24% and 23% of total PM2.5 mass, were the major sources of PM2.5, according to the result of positive matrix factorization analysis. A mixed source of biomass burning, oil combustion and incineration contributed 13% of PM2.5. Fine particulate matter arising from vehicles and industry contributed about 10% and 4% of PM2.5, respectively.  相似文献   

5.
A study was conducted to quantify wintertime contributions of source types to carbonaceous PM2.5 at four urban sites in the Las Vegas Valley, one of the most rapidly growing urban areas in the southwestern United States. Twenty-four hour average ambient samples were collected for mass, ions, elements, organic carbon (OC), elemental carbon (EC), and trace organic markers analysis. Additional measurements were made to determine diurnal patterns in light-absorbing black carbon (BC) as a marker for combustion sources. Carbonaceous PM sources of on-road gasoline vehicles, on-road diesel vehicles, and off-road diesel engines were characterized with their chemical profiles, as well as fuel-based emission factors, using an In-Plume Sampling System. The Effective Variance Chemical Mass Balance (EV-CMB) source apportionment model was applied to the ambient samples collected, using source profiles developed in this study as well as profiles from other relevant studies. Four main sources contributed to PM2.5 carbon within the Las Vegas Valley: (1) paved road dust, (2) on-road gasoline vehicles, (3) residential wood combustion, and (4) on-road diesel vehicles. CMB estimated that on-road mixed fleet gasoline vehicles are the largest source for OC and EC at all the sites. The contribution of paved road dust to both OC and EC was 5–10% at the four sites. On-road diesel vehicles contribute 22% of the OC and 34% of the EC at a site near the city center, which is located immediately downwind of a major freeway. Residential wood combustion is a more important source than on-road diesel vehicles for two residential neighborhood sites. These results are consistent with our conceptual model, and the research methodology may be applied to studying other urban areas.  相似文献   

6.
We conducted measurements of black carbon (BC) aerosol in Jiaxing, China during autumn from September 26 to November 30, 2013. We investigated temporal and diurnal variations of BC, and its correlations with meteorological parameters and other major pollutants. Results showed that hourly mass concentrations of BC ranged from 0.2 to 22.0 μg/m3, with an average of 5.1 μg/m3. The diurnal variation of BC exhibited a bimodal distribution, with peaks at 07:00 and 18:00. The morning peak was larger than the evening peak. The mass percentages of BC in PM2.5 and PM10 were 7.1% and 4.8%, respectively. The absorption coefficient of BC was calculated to be 44.4 Mm−1, which accounted for 11.1% of the total aerosol extinction. BC was mainly emitted from local sources in southwestern Jiaxing where BC concentrations were generally greater than 11 μg/m3 during the measurement period. Correlation analysis indicated that the main sources of BC were motor vehicle exhaust, and domestic and industrial combustion.  相似文献   

7.
Atmospheric fine particles (PM2.5) were collected in this study with middle volume samplers in Fuzhou, China, during both normal days and haze days in summer (September 2007) and winter (January 2008). The concentrations, distributions, and sources of polycyclic aromatic hydrocarbons (PAHs), organic carbon (OC), elemental carbon (EC), and water soluble inorganic ions (WSIIs) were determinated. The results showed that the concentrations of PM2.5, PAHs, OC, EC, and WSIIs were in the orders of haze > normal and winter > summer. The dominant PAHs of PM2.5 in Fuzhou were Fluo, Pyr, Chr, BbF, BkF, BaP, BghiP, and IcdP, which represented about 80.0% of the total PAHs during different sampling periods. The BaPeq concentrations of ∑PAHs were 0.78, 0.99, 1.22, and 2.43 ng/m3 in summer normal, summer haze, winter normal, and winter haze, respectively. Secondary pollutants (SO42?, NO3?, NH4+, and OC) were the major chemical compositions of PM2.5, accounting for 69.0%, 55.1%, 63.4%, and 64.9% of PM2.5 mass in summer normal, summer haze, winter normal, and winter haze, respectively. Correspondingly, secondary organic carbon (SOC) in Fuzhou accounted for 20.1%, 48.6%, 24.5%, and 50.5% of OC. The average values of nitrogen oxidation ratio (NOR) and sulfur oxidation ratio (SOR) were higher in haze days (0.08 and 0.27) than in normal days (0.05 and 0.22). Higher OC/EC ratios were also found in haze days (5.0) than in normal days (3.3). Correlation analysis demonstrated that visibility had positive correlations with wind speed, and negative correlations with relative humidity and major air pollutants. Overall, the enrichments of PM2.5, OC, EC, SO42?, and NO3? promoted haze formation. Furthermore, the diagnostic ratios of IcdP/(IcdP + BghiP), IcdP/BghiP, OC/EC, and NO3?/SO42? indicated that vehicle exhaust and coal consumption were the main sources of pollutants in Fuzhou.  相似文献   

8.
To better understand the seasonal characteristics of urban organic aerosol (OA) in the North China Plain (NCP), PM2.5 samples in the urban atmosphere of Liaocheng were collected and analyzed. The molecular distribution of the organic markers in the urban atmosphere of Liaocheng reveals that n-alkanes (39.3%) was the most abundant species all year round, followed by saccharides (28.2%), phthalic acids (Ph, 20.8%), biogenic secondary organic aerosol (BSOA) tracers (9.4%), and polycyclic aromatic hydrocarbon (PAHs, 2.3%). PM2.5, organic carbon (OC), elemental carbon (EC), and primary organic markers exhibit the highest concentrations in winter, due largely to the increased biomass burning and coal combustion for house heating in local and surrounding regions. However, the concentration and relative abundance of BSOA are significantly higher in summer than other seasons, induced by the more favorable meteorological conditions that would promote the emissions of biogenic volatile organic compounds (BVOCs) and the secondary production of BSOA. The ratios of OC/EC and 3-methyl-1,2,3-butanetricarboxylic acid to cis-pinic acid plus cis-pinonic acid (MBTCA/(PA + PNA) are higher in the warm seasons than those in the cold seasons, indicating that the oxidation of OA is sensitive to air temperature. Compared to 2017, the concentration level of PAHs during wintertime decreased by 40.8%, confirming that the stringent regulation of coal burning is effective. The highest concentration of high molecular weight (HMW) n-alkanes and three anhydrosugars in winter, and the close correlation of levoglucosan with HMW n-alkanes suggests that the impact of biomass burning was more significant in winter. The same seasonal characteristic of the ratios of high-/low-NOx products with NOx and the strong correlation of high-/low-NOx products with levoglucosan indicate that the formation of isoprene SOA (SOAI) tracers was significantly influenced by anthropogenic emissions. The molecular compositions, the distributions of fire spots, backward trajectories of air masses, and correlation analysis suggest that air pollution events in spring were primarily resulted from biomass burning and secondary oxidation, while pollution events in winter were largely driven by the increased combustion sources, and promoted aqueous secondary formation. Our results suggest that the reduction of biomass and coal combustion should be taken into account to improve the urban air quality in the NCP.  相似文献   

9.
For the years 2008–2013, particles of diameter <10 and 2.5 μm (PM10 and PM2.5, respectively), NOx, SO2, and O3 concentrations at urban, suburban, rural, and traffic sites in the Paris metropolitan area were analyzed. Strong spatial variability at traffic and rural sites and relatively uniform profiles at urban and suburban sites for PM10, PM2.5, and O3 were observed. The O3 weekend effect was induced by lower NOx emissions during the weekend, and favored volatile organic compounds (VOCs)-limited atmospheric conditions. In conjunction with low ambient temperature, these conditions could also favor increased formation of secondary particulate nitrates in winter. Winter air pollution events were associated with multiple pollutants, whereas those observed in spring were caused by high PM10 and PM2.5 levels. Backward trajectory analyses showed the contribution of sources in Western and Central Europe on days with high PM10, PM2.5, and O3, and a local/national component for NOx and SO2.  相似文献   

10.
Source apportionment of particulate matter (PM10) measurements taken in Delhi, India between January 2013 and June 2014 was carried out using two receptor models, principal component analysis with absolute principal component scores (PCA/APCS) and UNMIX. The results were compared with previous estimates generated using the positive matrix factorization (PMF) receptor model to investigate each model’s source-apportioning capability. All models used the PM10 chemical composition (organic carbon (OC), elemental carbon (EC), water soluble inorganic ions (WSIC), and trace elements) for source apportionment. The average PM10 concentration during the study period was 249.7 ± 103.9 μg/m3 (range: 61.4–584.8 μg/m3). The UNMIX model resolved five sources (soil dust (SD), vehicular emissions (VE), secondary aerosols (SA), a mixed source of biomass burning (BB) and sea salt (SS), and industrial emissions (IE)). The PCA/APCS model also resolved five sources, two of which also included mixed sources (SD, VE, SD+SS, (SA+BB+SS) and IE). The PMF analysis differentiated seven individual sources (SD, VE, SA, BB, SS, IE, and fossil fuel combustion (FFC)). All models identified the main sources contributing to PM10 emissions and reconfirmed that VE, SA, BB, and SD were the dominant contributors in Delhi.  相似文献   

11.
Daily fine particulate (PM2.5) samples were collected in Chengdu from April 2009 to February 2010 to investigate their chemical profiles during dust storms (DSs) and several types of pollution events, including haze (HDs), biomass burning (BBs), and fireworks displays (FDs). The highest PM2.5 mass concentrations were found during DSs (283.3 μg/m3), followed by FDs (212.7 μg/m3), HDs (187.3 μg/m3), and BBs (130.1 μg/m3). The concentrations of most elements were elevated during DSs and pollution events, except for BBs. Secondary inorganic ions (NO3?, SO42?, and NH4+) were enriched during HDs, while PM2.5 from BBs showed high K+ but low SO42?. FDs caused increases in K+ and enrichment in SO42?. Ca2+ was abundant in DS samples. Ion-balance calculations indicated that PM2.5 from HDs and FDs was more acidic than on normal days, but DS and BB particles were alkaline. The highest organic carbon (OC) concentration was 26.1 μg/m3 during FDs, followed by BBs (23.6 μg/m3), HDs (19.6 μg/m3), and DSs (18.8 μg/m3). In contrast, elemental carbon (EC) concentration was more abundant during HDs (10.6 μg/m3) and FDs (9.5 μg/m3) than during BBs (6.2 μg/m3) and DSs (6.0 μg/m3). The highest OC/EC ratios were obtained during BBs, with the lowest during HDs. SO42?/K+ and TCA/SO42? ratios proved to be effective indicators for differentiating pollution events. Mass balance showed that organic matter, SO42?, and NO3? were the dominant chemical components during pollution events, while soil dust was dominant during DSs.  相似文献   

12.
Normal (n)-alkanes and polycyclic aromatic hydrocarbons (PAHs) in PM2.5 were collected from Beijing in 2006 and analyzed using a thermal desorption-GC/MS technique. Annual average concentrations of n-alkanes and PAHs were 282 ± 96 and 125 ± 150 ng/m3, respectively: both were highest in winter and lowest in summer. C19–C25 compounds dominated the n-alkanes while benzo[b]fluoranthene, benzo[e]pyrene, and phenanthrene were the most abundant PAHs. The n-alkanes exhibited moderate correlations with organic carbon (OC) and elemental carbon (EC) throughout the year, but the relationships between the PAHs, OC and EC differed between the heating and non-heating seasons. The health risks associated with PAHs in winter were more than 40 times those in spring and summer even though the PM2.5 loadings were comparable. Carbon preference index values (<1.5) indicated that the n-alkanes were mostly from fossil fuel combustion. The ratios of indeno[123-cd]pyrene to benzo[ghi]pyrelene in summer and spring were 0.58 ± 0.12 and 0.63 ± 0.09, respectively, suggesting that the PAHs mainly originated from motor vehicles, but higher ratios in winter reflected an increased influence from coal, which is extensively burned for domestic heating. A comprehensive comparison showed that PAH pollution in Beijing has decreased in the past 10 years.  相似文献   

13.
The object of this study was to investigate the correlation of visibility with chemical composition of PM2.5 in Guangzhou. In April 2007, 28 PM2.5 samples were collected daily at the monitoring station of the South China Institute of Environmental Sciences (SCIES), in urban Guangzhou. Water-soluble ionic species (CI^-, NO3^-, SO4^2-, NH4^+, K^+, Na^+, Ca^2+, and Mg^2+) and carbonaceous contents (OC and EC) of the PM2.5 samples were determined to characterize their impact on visibility impairment. The results showed that sulfate was the dominant species that affected both light scattering and visibility. The average percentage contributions of the visibility-degrading species to light scattering coefficient were 40% for sulfate, 16% for nitrate, 22% for organics, and 22% for elemental carbon. Because of its foremost effect on visibility, sulfate reduction in PM2.5 would effectively improve the visibility of Guangzhou.  相似文献   

14.
Particulate matter (PM) pollution in an underground car park in Wuhan was investigated. Mass concentrations of PM10 and PM2.5 were obtained using gravimetric method. Selected metal elements, such as Fe, Mn, Zn, Pb, and Cu in PM10 samples, were determined using atomic absorption spectrometer (AAS). Beta attenuation method was applied to observe the hourly variation of PM10 levels. Results show that average PM10 concentrations at the entrance and at the exit were 101.3 μg/m3 and 234.4 μg/m3, respectively, and average PM2.5 concentrations at the entrance and at the exit were 47.7 μg/m3 and 62.7 μg/m3, respectively. PM pollution was worse at the exit than at the entrance. Hourly PM10 concentration was weakly correlated with traffic flow. Regarding element concentrations, the most enriched element in PM10 samples was Fe. Re-suspension of soil dust at the exit is an important source of PM10.  相似文献   

15.
Emissions from major agricultural residues were measured using a self-designed combustion system. Emission factors (EFs) of organic carbon (OC), elemental carbon (EC), and water-soluble ions (WSIs) (K+, NH4+, Na+, Mg2+, Ca2+, Cl, NO3, SO42–) in smoke from wheat and rice straw were measured under flaming and smoldering conditions. The OC1/TC (total carbon) was highest (45.8% flaming, 57.7% smoldering) among carbon fractions. The mean EFs for OC (EFOC) and EC (EFEC) were 9.2 ± 3.9 and 2.2 ± 0.7 g/kg for wheat straw and 6.4 ± 1.9 and 1.1 ± 0.3 g/kg for rice straw under flaming conditions, while they were 40.8 ± 5.6 and 5.8 ± 1.0 g/kg and 37.6 ± 6.3 and 5.0 ± 1.4 g/kg under smoldering conditions, respectively. Higher EC ratios were observed in particulate matter (PM) mass under flaming conditions. The OC and EC for the two combustion patterns were significantly correlated (p < 0.01, R = 0.95 for wheat straw; p < 0.01, R = 0.97 for rice straw), and a higher positive correlation between OC3 and EC was observed under both combustion conditions. WSIs emitted from flaming smoke were dominated by Cl and K+, which contributed 3.4% and 2.4% of the PM mass for rice straw and 2.2% and 1.0% for wheat straw, respectively. The EFs of Cl and K+ were 0.73 ± 0.16 and 0.51 ± 0.14 g/kg for wheat straw and 0.25 ± 0.15 and 0.12 ± 0.05 g/kg for rice straw under flaming conditions, while they were 0.42 ± 0.28 and 0.12 ± 0.06 g/kg and 0.30 ± 0.27 and 0.05 ± 0.03 g/kg under smoldering conditions, respectively. Na+, Mg2+, and NH4+ were vital components in PM, comprising from 0.8% (smoldering) to 3.1% (flaming) of the mass. Strong correlations of Cl with K+, NH4+, and Na+ ions were observed in rice straw and the calculated diagnostic ratios of OC/EC, K+/Na+ and Cl/Na+ could be useful to distinguishing crop straw burning from other sources of atmospheric pollution.  相似文献   

16.
Concentrations and spatial distributions of organic carbon (OC) and elemental carbon (EC) in atmospheric particles were measured at 8 sites in four cities (Hong Kong, Guangzhou, Shenzhen and Zhuhai) of Pearl River Delta Region (PRDR), China during 2001 winter period and 2002 summer period. PM2.5 (particie diameter smaller than 2.5 um) and PM10 (particie diameter smaller than 10 um) samples were collected on pre-fired quartz filters with mini-volume samplers and analyzed using thermal optical reflectance (TOR) method. The average PM2.5and PM10 Ievel were 60.1 and 93.1 μg·m-3, respectively, with PM2.5 constituting 65.3% of the PM10 mass. The average OC and EC concentrations in PM2.5 were 12.0 and 5.1 μg·m-3, respectively, while those in PM10 were 16.0 and 6.5 μg·m-3, respectively. The carbo-naceous aerosol accounted for 37.2% of the PM2.5 and 32.8% of the PM10. The highest concentrations of OC and EC were observed at Guangzhou city in both vvinter and summer seasons. The average OC/EC ratios were 2.  相似文献   

17.
For number concentration measurements of superfine particles a condensation nucleus counter (CNC) is frequently used. The combination of a new CNC module with a white light aerosol spectrometer and a passive collector makes possible accurate time-resolved determination of particle number within the overall size range of 10 nm to 40 μm and at concentrations up to 10^5 particles/cm^3. With the aerosol spectrometer a high time-resolved particle size determination is also possible in the size range of 0.3-40 μm up to the same high number concentrations of 10^5 particles/cm^3.  相似文献   

18.
Mass concentration and isotopic values δ13C and 14C are presented for the water-insoluble refractory carbon (WIRC) component of total suspended particulates (TSP), collected weekly during 2003, as well as from October 2005 to May 2006 at the WMO-GAW Mt. Waliguan (WLG) site. The overall average WIRC mass concentration was (1183 ± 120) ng/m3 (n = 79), while seasonal averages were 2081 ± 1707 (spring), 454 ± 205 (summer), 650 ± 411 (autumn), and 1019 ± 703 (winter) ng/m3. Seasonal variations in WIRC mass concentrations were consistent with black carbon measurements from an aethalometer, although WIRC concentrations were typically higher, especially in winter and spring. The δ13C PDB value (−25.3 ± 0.8)‰ determined for WIRC suggests that its sources are C3 biomass or fossil fuel combustion. No seasonal change in δ13C PDB was evident. The average percent Modern Carbon (pMC) for 14C in WIRC for winter and spring was (67.2 ± 7.7)% (n = 29). Lower pMC values were associated with air masses transported from the area east of WLG, while higher pMC values were associated with air masses from the Tibetan Plateau, southwest of WLG. Elevated pMC values with abnormally high mass concentrations of TSP and WIRC were measured during a dust storm event.  相似文献   

19.
A continuous dichotomous beta gauge monitor was used to characterize the hourly content of PM2.5, PM10–2.5, and Black Carbon (BC) over a 12-month period in an urban street canyon of Hong Kong. Hourly vehicle counts for nine vehicle classes and meteorological data were also recorded. The average weekly cycles of PM2.5, PM10–2.5, and BC suggested that all species are related to traffic, with high concentrations on workdays and low concentrations over the weekends. PM2.5 exhibited two comparable concentrations at 10:00–11:00 (63.4 μg/m3) and 17:00–18:00 (65.0 μg/m3) local time (LT) during workdays, corresponding to the hours when the numbers of diesel-fueled and gasoline-fueled vehicles were at their maximum levels: 3179 and 2907 h−1, respectively. BC is emitted mainly by diesel-fueled vehicles and this showed the highest concentration (31.2 μg/m3) during the midday period (10:00–11:00 LT) on workdays. A poor correlation was found between PM2.5 concentration and wind speed (R = 0.51, P-value > 0.001). In contrast, the concentration of PM10–2.5 was found to depend upon wind speed and it increased with obvious statistical significance as wind speed increased (R = 0.98, P-value < 0.0001).  相似文献   

20.
This study assessed air quality indicators before and after enactment of the Spanish anti-smoking law. Mass and number concentrations and the chemical composition of particles were evaluated. Microscopy analyses were also conducted. Real time concentrations of PM10, PM2.5, PM1 and ultrafine particles were measured under ventilated and non-ventilated conditions and PM10 samples were collected for detailed inorganic and organic chemical characterization. Before enactment of the law in 2010, tobacco smoke produced significant indoor ambient particulate matter pollution, with elevated particulate matter mass concentrations (PM10 and PM1 concentrations of 122–220 and 48–85 μg/m3, respectively) and ultrafine particle numbers (75,000 and 48,000 cm–3 under ventilated and non-ventilated conditions, respectively). Typical tobacco smoke tracers including iso- and anteiso-alkanes and elements including La and Ce from the ignition of lighters were abundant. Additionally, several toxic substances derived from tobacco smoke, including Cd (3.1 ng/m3) and benzo[a]pyrene (1.0 ng/m3) were present at concentrations approximately 10 times greater than those measured after enactment of the anti-smoking law. The anti-smoking law significantly reduced exposure to potentially toxic compounds by approximately 90%. This law is expected to have a positive health impact, particularly for people who spend considerable time in affected environments, such as employees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号