首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this note, we show that if X is the union of a finite collection of strong Σ-spaces, then X is a D-space. As a corollary, we get a conclusion that if X is the union of a finite collection of Moore spaces, then X is a D-space. This gives a positive answer to one of Arhangel'skii's problems [A.V. Arhangel'skii, D-spaces and finite unions, Proc. AMS 132 (7) (2004) 2163-2170]. In the last part of the note, we show that if X is the union of a finite collection of DC-like spaces, then X is a D-space, where DC is the class of all discrete unions of compact spaces. As a corollary, we show that if X is the union of a finite collection of regular subparacompact C-scattered spaces, then X is a D-space.  相似文献   

2.
In 2003 the author has associated with every cofinite inverse system of compact Hausdorff spaces X with limit X and every simplicial complex K (possibly infinite) with geometric realization P=|K| a resolution R(X,K) of X×P, which consists of paracompact spaces. If X consists of compact polyhedra, then R(X,K) consists of spaces having the homotopy type of polyhedra. In two subsequent papers the author proved that R(X,K) is a covariant functor in each of its variables X and K. In the present paper it is proved that R(X,K) is a bifunctor. Using this result, it is proved that the Cartesian product X×Z of a compact Hausdorff space X and a topological space Z is a bifunctor SSh(Cpt)×Sh(Top)→Sh(Top) from the product category of the strong shape category of compact Hausdorff spaces SSh(Cpt) and the shape category Sh(Top) of topological spaces to the category Sh(Top). This holds in spite of the fact that X×Z need not be a direct product in Sh(Top).  相似文献   

3.
In ZF, i.e., Zermelo-Fraenkel set theory without the axiom of choice, the category Top of topological spaces and continuous maps is well-behaved. In particular, Top has sums (=coproducts) and products. However, it may happen that for families (Xi)iI and (Yi)iI with the property that each Xi is homeomorphic to the corresponding Yi neither their sums iIXi and iIYi nor their products iIXi and iIYi are homeomorphic. It will be shown that the axiom of choice is not only sufficient but also necessary to rectify this defect.  相似文献   

4.
《Quaestiones Mathematicae》2013,36(5):579-592
Abstract

Given a topological space X = (X, T ), we show in the Zermelo-Fraenkel set theory ZF that:
  1. Every locally finite family of open sets of X is finite iff every pairwise disjoint, locally finite family of open sets is finite.

  2. Every locally finite family of subsets of X is finite iff every pairwise disjoint, locally finite family of subsets of X is finite iff every locally finite family of closed subsets of X is finite.

  3. The statement “every locally finite family of closed sets of X is finite” implies the proposition “every locally finite family of open sets of X is finite”. The converse holds true in case X is T4 and the countable axiom of choice holds true.

    We also show:

  4. It is relatively consistent with ZF the existence of a non countably compact T1 space such that every pairwise disjoint locally finite family of closed subsets is finite but some locally finite family of subsets is infinite.

  5. It is relatively consistent with ZF the existence of a countably compact T4 space including an infinite pairwise disjoint locally finite family of open (resp. closed) sets.

  相似文献   

5.
In this note, the concept of a linear neighborhood assignment is introduced. By discussing properties of linear D-spaces, we show that if T is a Suslin tree with FW (or CW) topology, then T is a Lindelöf D-space. We also show that if X is a countably compact space and , where for any linear neighborhood assignment ?n for Xn, there exists a strong DC-like subspace (or a subparacompact C-scattered closed subspace) Dn of Xn, such that for each nN, then X is a compact space; Every generalized ordered space is dually discrete. This gives a positive answer to a question of Buzyakova, Tkachuk and Wilson.  相似文献   

6.
The construct M of metered spaces and contractions is known to be a superconstruct in which all metrically generated constructs can be fully embedded. We show that M has one point extensions and that quotients in M are productive. We construct a Cartesian closed topological extension of M and characterize the canonical function spaces with underlying sets Hom(X,Y) for metered spaces X and Y. Finally we obtain an internal characterization of the objects in the Cartesian closed topological hull of M.  相似文献   

7.
Within the framework of Zermelo-Fraenkel set theory ZF, we investigate the set-theoretical strength of the following statements:
(1)
For every family(Ai)iIof sets there exists a family(Ti)iIsuch that for everyiI(Ai,Ti)is a compactT2space.
(2)
For every family(Ai)iIof sets there exists a family(Ti)iIsuch that for everyiI(Ai,Ti)is a compact, scattered, T2space.
(3)
For every set X, every compactR1topology (itsT0-reflection isT2) on X can be enlarged to a compactT2topology.
We show:
(a)
(1) implies every infinite set can be split into two infinite sets.
(b)
(2) iff AC.
(c)
(3) and “there exists a free ultrafilter” iff AC.
We also show that if the topology of certain compact T1 spaces can be enlarged to a compact T2 topology then (1) holds true. But in general, compact T1 topologies do not extend to compact T2 ones.  相似文献   

8.
In 2003 the author has associated with every cofinite inverse system of compact Hausdorff spaces X with limit X and every simplicial complex K (possibly infinite) with geometric realization P=|K| a resolution R(X,K) of X×P, which consists of paracompact spaces. If X consists of compact polyhedra, then R(X,K) consists of spaces having the homotopy type of polyhedra. In a subsequent paper, published in 2007, the author proved that R(X,K) is a covariant functor in the first variable. In the present paper it is proved that R(X,K) is a covariant functor also in the second variable.  相似文献   

9.
A space X is said to have property (USC) (resp. (LSC)) if whenever is a sequence of upper (resp. lower) semicontinuous functions from X into the closed unit interval [0,1] converging pointwise to the constant function 0 with the value 0, there is a sequence of continuous functions from X into [0,1] such that fn?gn (nω) and converges pointwise to 0. In this paper, we study spaces having these properties and related ones. In particular, we show that (a) for a subset X of the real line, X has property (USC) if and only if it is a σ-set; (b) if X is a space of non-measurable cardinal and has property (LSC), then it is discrete. Our research comes of Scheepers' conjecture on properties S1(Γ,Γ) and wQN.  相似文献   

10.
Example. There exists a space X with a sharp base and a perfect mapping onto a space Y which does not have a sharp base.  相似文献   

11.
In a previous paper the author has associated with every inverse system of compact Hausdorff spaces X with limit X and every simplicial complex K (possibly infinite) with geometric realization P=|K| a resolution RK(X) of X×P, which consists of paracompact spaces. If X consists of compact polyhedra, then RK(X) consists of spaces having the homotopy type of polyhedra. In the present paper it is proved that this construction is functorial. One of the consequences is the existence of a functor from the strong shape category of compact Hausdorff spaces X to the shape category of spaces, which maps X to the Cartesian product X×P. Another consequence is the theorem which asserts that, for compact Hausdorff spaces X, X, such that X is strong shape dominated by X and the Cartesian product X×P is a direct product in Sh(Top), then also X×P is a direct product in the shape category Sh(Top).  相似文献   

12.
13.
All spaces are assumed to be Tychonoff. A space X is called projectively P (where P is a topological property) if every continuous second countable image of X is P. Characterizations of projectively Menger spaces X in terms of continuous mappings , of Menger base property with respect to separable pseudometrics and a selection principle restricted to countable covers by cozero sets are given. If all finite powers of X are projectively Menger, then all countable subspaces of Cp(X) have countable fan tightness. The class of projectively Menger spaces contains all Menger spaces as well as all σ-pseudocompact spaces, and all spaces of cardinality less than d. Projective versions of Hurewicz, Rothberger and other selection principles satisfy properties similar to the properties of projectively Menger spaces, as well as some specific properties. Thus, X is projectively Hurewicz iff Cp(X) has the Monotonic Sequence Selection Property in the sense of Scheepers; βX is Rothberger iff X is pseudocompact and projectively Rothberger. Embeddability of the countable fan space Vω into Cp(X) or Cp(X,2) is characterized in terms of projective properties of X.  相似文献   

14.
15.
We apply and develop an idea of E. van Douwen used to define D-spaces. Given a topological property P, the class P dual to P (with respect to neighbourhood assignments) consists of spaces X such that for any neighbourhood assignment there is YX with YP and . We prove that the classes of compact, countably compact and pseudocompact are self-dual with respect to neighbourhood assignments. It is also established that all spaces dual to hereditarily Lindelöf spaces are Lindelöf. In the second part of this paper we study some non-trivial classes of pseudocompact spaces defined in an analogous way using stars of open covers instead of neighbourhood assignments.  相似文献   

16.
A metric space X is straight if for each finite cover of X by closed sets, and for each real valued function f on X, if f is uniformly continuous on each set of the cover, then f is uniformly continuous on the whole of X. A locally connected space is straight iff it is uniformly locally connected (ULC). It is easily seen that ULC spaces are stable under finite products. On the other hand the product of two straight spaces is not necessarily straight. We prove that the product X×Y of two metric spaces is straight if and only if both X and Y are straight and one of the following conditions holds:
(a)
both X and Y are precompact;
(b)
both X and Y are locally connected;
(c)
one of the spaces is both precompact and locally connected.
In particular, when X satisfies (c), the product X×Z is straight for every straight space Z.Finally, we characterize when infinite products of metric spaces are ULC and we completely solve the problem of straightness of infinite products of ULC spaces.  相似文献   

17.
18.
We show in the Zermelo-Fraenkel set theory ZF without the axiom of choice:
  1. Given an infinite set X, the Stone space S(X) is ultrafilter compact.

  2. For every infinite set X, every countable filterbase of X extends to an ultra-filter i? for every infinite set X, S(X) is countably compact.

  3. ω has a free ultrafilter i? every countable, ultrafilter compact space is countably compact.

    We also show the following:

  4. There are a permutation model 𝒩 and a set X ∈ 𝒩 such that X has no free ultrafilters and S(X) is not compact but S(X) is countably compact and every countable filterbase of X extends to an ultrafilter.

  5. It is relatively consistent with ZF that every countable filterbase of ω extends to an ultrafilter but there exists a countable filterbase of ? which does not extend to an ultrafilter. Hence, it is relatively consistent with ZF that ? has free ultrafilters but there exists a countable filterbase of ? which does not extend to an ultrafilter.

  相似文献   

19.
Let H0(X) (H(X)) denote the set of all (nonempty) closed subsets of X endowed with the Vietoris topology. A basic problem concerning H(X) is to characterize those X for which H(X) is countably compact. We conjecture that u-compactness of X for some uω (or equivalently: all powers of X are countably compact) may be such a characterization. We give some results that point into this direction.We define the property R(κ): for every family of closed subsets of X separated by pairwise disjoint open sets and any family of natural numbers, the product is countably compact, and prove that if H(X) is countably compact for a T2-space X then X satisfies R(κ) for all κ. A space has R(1) iff all its finite powers are countably compact, so this generalizes a theorem of J. Ginsburg: if X is T2 and H(X) is countably compact, then so is Xn for all n<ω. We also prove that, for κ<t, if the T3 space X satisfies a weak form of R(κ), the orbit of every point in X is dense, and X contains κ pairwise disjoint open sets, then Xκ is countably compact. This generalizes the following theorem of J. Cao, T. Nogura, and A. Tomita: if X is T3, homogeneous, and H(X) is countably compact, then so is Xω.Then we study the Frolík sum (also called “one-point countable-compactification”) of a family . We use the Frolík sum to produce countably compact spaces with additional properties (like first countability) whose hyperspaces are not countably compact. We also prove that any product α<κH0(Xα) embeds into .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号