首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We investigate the incoherently and strongly coupled Manakov vector dipole soliton pairs in nonlocal nonlinear media. We use variational approach, to describe analytical properties of these solutions in a strongly nonlocal regime. We show that the presence of fundamental component improve stability of the dipole nonlocal soliton. In the limit of highly nonlocal nonlinearity, the evolution behaviors of the vector solitons is determined by their total power.  相似文献   

2.
崔维娜  黄国翔 《中国物理快报》2004,21(12):2437-2440
We predict that a three-wave resonant interaction (TWRI) for the excitations created from a continuous-wave background is possible in nonlinear optical fibres with a centro-symmetry. We show that in normal dispersion regime and near the zero-dispersion point of a single-mode optical fibre, the phase-matching condition for the TWRI can be satisfied by suitably choosing the wavevectors and frequencies of the exciting waves. The nonlinear envelope equations for the TWRI are derived by using a method of multiple-scales, and their explicit solutions for sum- and difference-frequency mixing are provided and discussed.  相似文献   

3.
We solve the three-dimensional (3D) time-dependent strongly nonlocal nonlinear Schrödinger equation (NNSE) in spherical coordinates, with the help of Kummer's functions. We obtain analytical solitary solutions, which we term the Kummer solitons. We compare analytical solutions with the numerical solutions of NNSE. We discuss higher-order Kummer spatial solitons, which can exist in various forms, such as the 3D vortex solitons and the multipole solitons.  相似文献   

4.
We study the azimuthal modulational instability of vortices with different topological charges, in the focusing two-dimensional nonlinear Schrödinger (NLS) equation. The method of studying the stability relies on freezing the radial direction in the Lagrangian functional of the NLS in order to form a quasi-one-dimensional azimuthal equation of motion, and then applying a stability analysis in Fourier space of the azimuthal modes. We formulate predictions of growth rates of individual modes and find that vortices are unstable below a critical azimuthal wave number. Steady-state vortex solutions are found by first using a variational approach to obtain an asymptotic analytical ansatz, and then using it as an initial condition to a numerical optimization routine. The stability analysis predictions are corroborated by direct numerical simulations of the NLS. We briefly show how to extend the method to encompass nonlocal nonlinearities that tend to stabilize such solutions.  相似文献   

5.
We study the properties of the coherent structures induced by the modulational instability (MI) of the two linearly coupled complex Ginzburg-Landau equations with both cubic and quintic terms, which in nonlinear optics can model ring lasers based on dual-core fibers. We obtain new stationary solutions different from the previous result and the analytic gain formula as function of the linear coupling constant and the model parameters. The fact that the system can be modulationally unstable for the vast region of the parameters space is demonstrated. The effects of the linear coupling constant on the evolution of a continuous wave under the MI are numerically investigated in the presence of the linear loss or gain. It is found that doubly asymmetric stable solitary pulses and stable breathers can be formed from the perturbed continuous waves state by the MI. The conditions for generating the periodic stable solitary pulses and fronts by the MI are identified by varying the linear coupling constant.  相似文献   

6.
The dynamics of nonlinear pulse propagation in an average dispersion-managed soliton system is governed by a constant coefficient nonlinear Schrödinger (NLS) equation. For a special set of parameters the constant coefficient NLS equation is completely integrable. The same constant coefficient NLS equation is also applicable to optical fiber systems with phase modulation or pulse compression. We also investigate MI arising in the cubic-quintic nonlinear Schrödinger equation for ultrashort pulse propagation. Within this framework, we derive ordinary differential equations (ODE’s) for the time evolution of the amplitude and phase of modulation perturbations. Analyzing the ensuing ODE’s, we derive the classical modulational instability criterion and identify it numerically. We show that the quintic nonlinearity can be essential for the stability of solutions. The evolutions of modulational instability are numerically investigated and the effects of the quintic nonlinearity on the evolutions are examined. Numerical simulations demonstrate the validity of the analytical predictions.  相似文献   

7.
8.
We find exact solutions of the two- and three-dimensional nonlinear Schrödinger equation with a supporting potential. We focus in the case where the diffraction operator is of the hyperbolic type and both the potential and the solution have the form of an X-wave. Following similar arguments, several additional families of exact solutions can also can be found irrespectively of the type of the diffraction operator (hyperbolic or elliptic) or the dimensionality of the problem. In particular we present two such examples: The one-dimensional nonlinear Schrödinger equation with a stationary and a “breathing” potential and the two-dimensional nonlinear Schrödinger with a Bessel potential.  相似文献   

9.
We consider soliton solutions of a two-dimensional nonlinear system with the self-focusing nonlinearity and a quasi 1D confining potential, taking harmonic potential as an example. We investigate a single soliton in detail and find criterion for possible collapse. This information is then used to investigate the dynamics of the two soliton collision. In this dynamics we identify three regimes according to the relation between nonlinear interaction and the excitation energy: elastic collision, excitation and collapse regime. We show that surprisingly accurate predictions can be obtained from variational analysis.  相似文献   

10.
In this paper, we present the (1 + 1)-dimensional inhomogeneous nonlinear Schrödinger (NLS) equation, which describes propagation of optical waves in nonlinear optical systems exhibiting spatial inhomogeneity, inhomogeneous nonlinearity and gain or loss at the same time. Exact multi-soliton solutions are presented by the simple Darboux transformation based on the Lax Pair, and the exact one- and two-soliton solutions in explicit forms are also generated. As two examples, we consider two nonlinear optical systems. In the systems, based on the exact solutions, a series of interesting properties of optical waves are displayed.  相似文献   

11.
We show that the time-dependent nonlinear wave equation in closed-circuit photovoltaic media can exhibit quasi-steady-state and steady-state spatial solitons. We demonstrate that the formation time of open-circuit quasi-steady-state and open-circuit steady-state dark solitons decreases with an increase in the intensity ratio of the soliton, which is the ratio between the soliton peak intensity and the dark irradiance. We find that for the time-dependent nonlinear wave equation that exhibits only an open-circuit steady-state dark soliton, changing the electric current density J0 does not generate quasi-steady-state dark solitons and affects the formation time of steady-state dark solitons and that for the time-dependent nonlinear wave equation that exhibits an open-circuit quasi-steady-state dark soliton, changing J0 gives rise to three different time evolution regimes of the full width half maximum of the soliton’s intensity. The first regime shows that the formation time of steady-state dark solitons increases with J0 whereas the formation time of quasi-steady-state dark solitons is independent of J0. The second regime shows that the formation time of steady-state dark solitons decreases with an increases in J0 and the formation time of quasi-steady-state dark solitons increases with J0. The third regime shows that changing J0 enables only steady-state dark solitons in the time-dependent nonlinear wave equation, of which the formation time increases with J0.  相似文献   

12.
钟卫平 《中国物理快报》2008,25(6):2075-2077
We demonstrate the existence of a broad class of higher-order Laguerre Gaussian asymmetric spatial optical solitons in strongly nonlocal nonlinear media. Furthermore, we discuss specific values (q = 0) of the modulation depth parameter for different rational values of the topological charge in detail. Our results show that higherorder asymmetry spatial sofiton family can exist in various forms, such as two-dimensional defect haff-solitons, asymmetric single-layer and multi-layer necklace solitons.  相似文献   

13.
We present a generalized soliton theory based on the one-dimensional generalized nonlinear Schroedinger equation,from which one can easily obtain the bright, dark, and grey soliton waveforms, and their existence curves. We show that the forming conditions of spatial solitons are directly dependent on the relationship between the index perturbation and the intensity, no matter whether the index perturbation is positive or negative. Some relevant examples are presented when the solitons are supported by the photoisomerization nonlinearity.  相似文献   

14.
We show that two-soliton solutions in nonlinear dissipative systems can exist in various forms. As with single solitons, they can be stationary, periodic or chaotic. In particular, we find new types of vibrating and shaking soliton pairs. Each type of pair is stable in the sense that the bound state exists in the same form indefinitely.  相似文献   

15.
Waves that appear from nowhere and disappear without a trace   总被引:1,自引:0,他引:1  
The title (WANDT) can be applied to two objects: rogue waves in the ocean and rational solutions of the nonlinear Schrödinger equation (NLSE). There is a hierarchy of rational solutions of ‘focussing’ NLSE with increasing order and with progressively increasing amplitude. As the equation can be applied to waves in the deep ocean, the solutions can describe “rogue waves” with virtually infinite amplitude. They can appear from smooth initial conditions that are only slightly perturbed in a special way, and are given by our exact solutions. Thus, a slight perturbation on the ocean surface can dramatically increase the amplitude of the singular wave event that appears as a result.  相似文献   

16.
Lijuan Ge  Jielong Shi  Qian Kong 《Optik》2011,122(9):749-753
Both azimuthally and radially polarized vortex solitons are investigated to be able to exist in highly nonlocal nonlinear media. We get exactly analytical solutions of azimuthally polarized vortex solitons with only polarization singularities and radially polarized vortex solitons with both phase singularities and polarization singularities. Both azimuthally and radially polarized vortex solitons can exist in nonlocal self-focusing nonlinear media with proper modulation of the beam power and the degree of nonlocality. Contrary to those of radially polarized counterparts in local Kerr media, the topological charge can be any integer. When the topological charge m ≠ 0, both phase singularities and polarization singularities work. When m = 0, the polarization singularities work. Azimuthally polarized vortex solitons with polarization singularities corresponds to the linearly polarized vortex solitons with single charge. Our results show that polarization singularities work the same way as phase singularities in some sense.  相似文献   

17.
We present a systematic study of singular vortex solutions of the critical and supercritical two-dimensional nonlinear Schrödinger equation. In particular, we study the critical power for collapse and the asymptotic blowup profile of singular vortices.  相似文献   

18.
In this paper, we present solutions for the nonlinear Schrödinger (NLS) equation with spatially inhomogeneous nonlinearities describing propagation of light in nonlinear media, under two sets of transverse modulation forms of inhomogeneous nonlinearity. The bright soliton solution and Gaussian solution have been obtained for one set of inhomogeneous nonlinearity modulation. For the other, bright soliton solution, black soliton solution and the train solution have been presented. Stability of the solutions has been determined by exact soliton solutions under certain conditions.  相似文献   

19.
We provide exact periodic and soliton solutions of optical domain-wall structures that arise due to modulation instability in a nonlinear medium with normal dispersion.  相似文献   

20.
We investigate the bifurcation structure of a family of relative equilibria of a ring of seven oscillators described by the discrete nonlinear Schrödinger equation (DNLSE) when the period of these orbits and a suitable defect act as bifurcation parameters. We find a reduced Hamiltonian that gives substantial insight into the dynamics of this system. The convexity of this Hamiltonian at given nonresonant equilibria supports the stability of nearby quasiperiodic solutions. We show that the local loss of convexity in the reduced Hamiltonian is determined by the Hessian of its integrable part in the family of relative equilibria under study. Stable quasiperiodic solutions are studied by considering the power spectral densities of a set of suitable fast and slow actions, whose origin is suggested by the averaging principle. We also show that the return times form an optimal embedding to characterize the system dynamics. We show that the power spectral density of a suitable interference signal, arising from a ring of Bose-Einstein condensates and described by the DNLSE, has a single prominent peak at the breather-like relative equilibria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号