首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The basic physical processes in laser-matter interaction, up to (for a neodymium laser) are now well understood, on the other hand, new phenomena evidenced in PIC code simulations have to be investigated above . Thus, the relativistic motion of a charged particle in a linearly polarized homogeneous electromagnetic wave is studied, here, using the Hamiltonian formalism. First, the motion of a single particle in a linearly polarized traveling wave propagating in a non-magnetized space is explored. The problem is shown to be integrable. The results obtained are compared to those derived considering a cold electron plasma model. When the phase velocity is close to c, it is shown that the two approaches are in good agreement during a finite time. After this short time, when the plasma response is taken into account no chaos take place at least when considering low densities and/or high wave intensities. The case of a charged particle in a traveling wave propagating along a constant homogeneous magnetic field is then considered. The problem is shown to be integrable when the wave propagates in vacuum. The existence of a synchronous solution is shown very simply. In the case when the wave propagates in a low density plasma, using a simplifying Lorentz transformation, it is shown that the system can be reduced to a time-dependent system with two degrees of freedom. The system is shown to be nonintegrable, chaos appears when a secondary resonance and a primary resonance overlap. Finally, stochastic instabilities are studied by considering the motion of one particle in a very high intensity wave perturbed by one or two low intensity traveling waves. Resonances are identified and conditions for resonance overlap are studied.  相似文献   

2.
Asif Shah 《Physics letters. A》2009,373(45):4164-4168
The Korteweg-de Vries-Burger (KdVB) equation is derived for ion acoustic shock waves in a weakly relativistic electron-positron-ion plasma. Electrons, positrons are considered isothermal and ions are relativistic. The travelling wave solution has been acquired by employing the tangent hyperbolic method. The vivid display of the graphical results is presented and analyzed. It is observed that amplitude and steepness of the shock wave decrease with increase of the relativistic streaming factor, the positron concentration and they increase with the increase of the coefficient of kinematic viscosity and vice versa. It is determined that at low temperature the shock wave propagates, whereas at very high temperature the solitary wave propagates in the system. The results may have relevance in astrophysical plasmas as well as in inertial confinement fusion plasmas.  相似文献   

3.
The wave excited by a coaxial probe in a beam-plasma system usually propagates as two waves which are independent of each other, i.e., a damped Trivelpiece mode of the plasma and a growing space charge wave of the beam (referred to a reactive-medium instability). While, when the beam velocity is equal to or slightly larger than the phase velocity of the plasma wave, the inverse Landau damping of the wave is observed, instead of the damped Trivelpiece mode.  相似文献   

4.
This paper considers the far field potential of a stationary test charge in a plasma. It is shown that external fields can have a significant influence on the potential which can be very large when an upper hybrid wave propagates through the plasma.  相似文献   

5.
建立了电磁波穿过磁化等离子体鞘套的一维模型,并采用数值分析方法对太赫兹(THz)电磁波在磁化等离子体鞘套中传播时的反射率、透射率和衰减值进行了计算仿真,分析了磁化条件下磁场强度、太赫兹波频率、等离子体鞘套厚度、等离子体碰撞频率和等离子体密度对太赫兹波在磁化等离子体鞘套中传播特性的影响。仿真结果表明:排除衰减波峰对应的频率范围,外加磁场有效降低了太赫兹波传输的衰减,在固定磁场强度下,衰减波峰两侧的衰减值均达到了5 dB以下,有效地解决了通信黑障问题。  相似文献   

6.
建立了电磁波穿过磁化等离子体鞘套的一维模型,并采用数值分析方法对太赫兹(THz)电磁波在磁化等离子体鞘套中传播时的反射率、透射率和衰减值进行了计算仿真,分析了磁化条件下磁场强度、太赫兹波频率、等离子体鞘套厚度、等离子体碰撞频率和等离子体密度对太赫兹波在磁化等离子体鞘套中传播特性的影响。仿真结果表明:排除衰减波峰对应的频率范围,外加磁场有效降低了太赫兹波传输的衰减,在固定磁场强度下,衰减波峰两侧的衰减值均达到了5 dB以下,有效地解决了通信黑障问题。  相似文献   

7.
Theoretical and experimental studies of the acoustic scattering by a finite linear grating of elastic cylindrical shells are performed. It is observed that a resonant interaction takes place at low frequency when the shells are very close to each other. This phenomenon can be clearly associated to the Scholte-Stoneley wave that propagates around a single shell. It is shown that each resonance of the Scholte-Stoneley wave is split up into N resonances when N shells compose the grating.  相似文献   

8.
By Whitham's method of averaged Lagrangian and using Low's form of Lagrangian, coupled mode equations and coupling coefficients are derived for resonant nonlinear interaction of two longitudinal and one transverse wave in a magnetized plasma, in which the later wave propagates along the external uniform magnetic field. The limiting form of these coupling coefficients are obtained when the external magnetic field vanishes.  相似文献   

9.
We demonstrate the existence of a stationary rarefaction wave in a current-carrying plasma. The result unexpectedly mismatches with the commonly accepted viewpoint about the impossibility of rarefaction shocks in gases or plasmas. The discovered wave may appear when the magnetic field has penetrated into the plasma and magnetized the electrons. At this stage, the wave front is formed at the cathode and propagates towards the anode through the magnetized quasineutral plasma. The case of low collisionality is investigated analytically. This phenomenon could explain the recent surprising experimental observations of a local plasma density drop in several laboratory plasmas.  相似文献   

10.
The problem of suppressing a counterpropagating wave when pulse propagates in linear or nonlinear medium or system due to interference quenching at the input boundary with an additional pulse incident on the output boundary has been analyzed. A way of unambiguous determination of the profile of the additional pulse is described for the case of optical media without spatial dispersion.  相似文献   

11.
It is shown that a smooth metal film (or a plasma layer) can be made transparent for an electromagnetic wave when two identical subwavelength diffraction gratings are placed on both sides of the film. The electromagnetic wave transmission through the metal film is caused by excitation of evanescent surface waves (plasmons) and their transformation into propagating waves at the gratings. A model which is developed analytically shows that the problem of the wave transmission is physically equivalent to the problem of excitation of two coupled resonators of evanescent waves which are formed at the two film surfaces.  相似文献   

12.
A new approach to the perturbative analysis of dynamical systems, which can be described approximately by soliton solutions of integrable non-linear wave equations, is employed in the case of small-amplitude solutions of the ion acoustic wave equations of plasma physics. Instead of pursuing the traditional derivation of a perturbed KdV equation, the ion velocity is written as a sum of two components: elastic and inelastic. In the single-soliton case, the elastic component is the full solution. In the multiple-soliton case, it is complemented by the inelastic component. The original system is transformed into two evolution equations: An asymptotically integrable Normal Form for ordinary KdV solitons, and an equation for the inelastic component. The zero-order term of the elastic component is a single-soliton or multiple-soliton solution of the Normal Form. The inelastic component asymptotes into a linear combination of single-soliton solutions of the Normal Form, with amplitudes determined by soliton interactions, plus a second-order decaying dispersive wave. Satisfaction of a conservation law by the inelastic component and of mass conservation by the disturbance to the ion density is determined solely by the initial data and/or boundary conditions imposed on the inelastic component. The electrostatic potential is a first-order quantity. It is affected by the inelastic component only in second order. The charge density displays a triple-layer structure. The analysis is carried out through the third order.  相似文献   

13.
Sadler J  Maev RG 《Ultrasonics》2008,48(8):687-696
This paper considers the problem of calculating the propagation of acoustic waves within an ideal isotropic multilayer plate structure. In such a situation the process of mode conversion as the wave interacts with each interface of the plate creates an ever increasing number of waves to track, and to perform calculations on, as the wave propagates within the layered media. Exploring this problem by examining the ray paths of the multiple reflections within the plate structure, it is possible to show that upon careful consideration many of these paths will travel equivalent distances in time and space becoming coincident. The principle of superposition can then be used to combine these coincident paths, this superposition reduces the number of waves to track, and simplifies the problem so that the necessary calculations can be performed in a time efficient manner.  相似文献   

14.
For the transverse electric polarization case (TE) we present a treatment of the optical reflectivity and transmissivity of a slab whose dielectric coefficient is a real valued function of the light intensity. If this function is numerically integrable with respect to the light intensity, our treatment can serve as an algorithm for a numerical solution of the nonlinear wave equation. If the dielectric function is proportional to the intensity, an analytical solution of the cubic wave equation is given for the electric field strength and for the phase of the field in terms of Weierstrass' elliptic functions and first elliptic theta functions, respectively. Evaluating this solution by means of a computer algebra system yields the reflectivity, transmissivity and phase dependency on the incident field intensity and on parameters characteristic for the problem. Certain combinations of the parameters lead to bistable and multivalued behavior. The solution found is used to determine the relative extrema of the reflectivity and the critical values of the thickness and of the incident intensity. The results are a generalization of linear optics results. Application of the analysis to the cubic-quintic wave equation yields the general analytic solution which is used to detemine the reflectivity of a semi-infinite nonlinear medium.  相似文献   

15.
Plane wave propagation in chiral plasma and chiral ferrite media is studied in kDB coordinate system. General wave equations and characteristic equations of plane waves propagating along an arbitrary direction in chiral plasma and in chiral ferrites are derived in simple formulations respectively. Four wavenumbers and their corresponding dispersion characteristics are resulted for propagation both along and normal to the biasing magnetic field. When plane wave with negative helicity propagates along the biasing magnetic field in chiral ferrites, backward waves emerge. However backward waves occur with both positive and negative helicities when propagating along the biasing magnetic field in chiral plasma.  相似文献   

16.
The electromagnetic field induced by shock compression of a current-carrying conductor is shown to consist of two current waves. One propagates in the uncompressed material at the shock-wave velocity. The other is due to current inward diffusion. As the shock wave propagates, the current passes from the first wave to the second. At large observation periods, the situation resembles conventional current diffusion into a conducting half-space. Control parameters for electrodynamic problems with shock waves are found. Their physical meaning is the ratio between the times of field convection and diffusion in different regions. In specific cases, the problem is reduced to the motion of the surface of a current-carrying half-space and to shock metallization of an insulator.  相似文献   

17.
Externally driven, vertically polarized transverse dust-lattice waves were observed in a one-dimensional strongly coupled dust chain levitated in the plasma-sheath boundary of a dc argon plasma at low gas pressure around 5 mtorr. Real and imaginary parts of the complex wave number were measured in the experiments. The experimental result clearly shows that the observed transverse dust-lattice wave propagates as a backward wave, which is in good agreement with the theoretical prediction.  相似文献   

18.
We consider an integrable nonlinear wave system (anisotropic chiral field model) which exhibits a soliton solution when the Cauchy problem for an infinitely long medium is posed. Whenever the boundary value problem is formulated for the same system but for a medium of finite extension, we reveal that the soliton becomes unstable and the true attractor is a different structure which is called polarization attractor. In contrast to the localized nature of solitons, the polarization attractor occupies the entire length of the medium. By demonstrating the qualitative difference between nonlinear wave propagation in an infinite medium and in a medium of finite extension (with simultaneous change of the initial value problem to the boundary value problem), we would like to point out that solitons may loose their property of being stable attractors. Additionally, our findings show the interest of developing methods of integration for boundary value problems.  相似文献   

19.
T. Chen  J.N. Xie 《Optik》2010,121(3):253-258
The cholesteric liquid crystal can be regarded as a multilayer that consists of many layer uniaxial thin films that exhibit optical rotation. For the convenient discussion of the polarization states of the transmitted wave through a cholesteric liquid crystal, a new 2×2 matrix is given, in which the matrix element is changed into the complex exponential. Here we discuss the treatment process of this method in detail and its role in the investigation of the polarization states. Using this method we easily study the polarization states of the transmitted wave. The calculated results show that the polarization states of wave will be changed when it propagates along the cholesteric liquid crystal.  相似文献   

20.
An integrable coupling family of Merola-Ragnisco-Tu lattice systems is derived from a four-by-four matrix spectral problem. The Hamiltonian structure of the resulting integrable coupling family is established by the discrete variational identity. Each lattice system in the resulting integrable coupling family is proved to be integrable discrete Hamiltonian system in Liouville sense. Ultimately, a nonisospectral integrable lattice family associated with the resulting integrable lattice family is constructed through discrete zero curvature representation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号