首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
In this study, we have investigated the resistance switching behavior of the La0.5Ca0.5MnO3/Nb:SrTiO3 heterojunction. The junction shows a negative resistance switching ratio (ER) below 140 K. When , the ER goes from negative to positive with increasing bias voltage. When T>220 K, the junction shows a positive ER. This variation from a negative to a positive value indicates that the ER is determined primarily by two phenomena: (a) the negative ER value can be attributed to a disruption of the charge-ordered insulating domains in La0.5Ca0.5MnO3 under large electric fields, and (b) the positive ER value at high temperatures is due to the modulation of the interface barrier width driven by the electrochemical migration of oxygen vacancies.  相似文献   

2.
The structural, magnetic and transport properties of La0.5Sr0.5MnO2.88 and La0.5Sr0.5Mn0.5Ti0.5O3 samples have been investigated systematically. Indeed, this series has been considered to understand the influence of physical parameters such as oxygen deficiency and titanium doping effect in undoped La0.5Sr0.5MnO3 sample. Ceramic material based on La0.5Sr0.5MnO2.88 exhibits interesting behaviours of charge-ordering (CO), ferromagnetic (FM) states and a good conductivity down to the lowest temperatures. The substitution of Ti for Mn destroyed drastically the CO, damaged the motion of itinerant eg electrons and changed the local parameters of perovskite cell. A change of the structure from tetragonal to rhombohedral symmetry is observed causing a weakening of double-exchange interaction. The experiment results show that the suppression of the CO is sensitive to the variety of Mn3+/Mn4+ ratio. In a field of 8 T at 10 K, FM and CO phase can be evaluated to be ∼20:80 according to the μexpcal ratio for La0.5Sr0.5MnO2.88, whereas the CO state is suppressed for La0.5Sr0.5Mn0.5Ti0.5O3 sample, FM and anti-ferromagnetic (AFM) phase are coexisted and evaluated to be ∼54:46, respectively.  相似文献   

3.
The structural, electronic and elastic properties of Ti3Si0.5Ge0.5C2 have been investigated by using the pseudopotential plane-wave method within the density-functional theory. Our calculated equation of state (EOS) is consistent with the experimental results. The density of states (DOS) indicates that Ti3SixGe1−xC2 (x=0, 0.5, 1.0) are metallic, and these compounds have nearly the same electrical conductivity. The elastic constants for Ti3Si0.5Ge0.5C2 are obtained at zero pressure, which is compared to Ti3SiC2 and Ti3GeC2. We can conclude that Ti3Si0.5Ge0.5C2 is brittle in nature by analyzing the ratio between bulk and shear moduli. There appears to be little effect on the electronic and elastic properties with the Ge substitution to Si atoms in Ti3SiC2.  相似文献   

4.
The effect of Mn2+Co2+Ti4+ substitution on microwave absorption has been studied for BaCo0.5Mn0.5Ti1.0Fe10O19 ferrite-acrylic resin composites in frequency range from 12 to 20 GHz. X-ray diffraction (XRD), scanning electron microscope (SEM), vibrating sample magnetometer, AC susceptometer and vector network analyzer were used to analyze the structural, magnetic and microwave absorption properties. The results showed that the magnetoplumbite structures for all samples have been formed. Based on microwave measurement on reflectivity, BaCo0.5Mn0.5Ti1.0Fe10O19 may be a good candidate for electromagnetic compatibility and other practical applications at high frequency.  相似文献   

5.
Using ac susceptibility, dc magnetization and heat-capacity measurements, we have investigated the magnetic properties of Cd0.5Cu0.5Cr2O4. Cd0.5Cu0.5Cr2O4 has an extraordinary magnetic phase including a metastable spin-glass (SG) phase at zero field, a possible phase separation scenario of AFM/FM above ∼0.5 T field, and at intermediate fields, an apparent pseudo reentrant spin-glass (RSG) plateau is observed. These phenomena are closely correlated with the pinning effect of the Cu2+ sublattice on the frustrated lattice.  相似文献   

6.
Lead-free piezoelectric ceramics (1−x)Bi0.5(Na0.82K0.18)0.5TiO3xNaSbO3 have been prepared by a conventional ceramics technique, and their microstructure and electrical properties have been investigated. The addition of NaSbO3 has no remarkable effect on the crystal structure within the studied doping content; however, an obvious change in microstructure took place. With increase in NaSbO3 content, the temperature from a ferroelectric to antiferroelectric phase transition increases, and the temperature for a transition from antiferroelectric phases to paraelectric phases changes insignificantly. Simultaneously, the temperature range between the rhombohedral phase transition point and the Curie temperature point becomes smaller. The piezoelectric properties significantly increase with increase in NaSbO3 content and the piezoelectric constant and electromechanical coupling factor attain maximum values of d33=160 pC/N and kp=0.333 at x=0.01. The results indicate that (1−x)Bi0.5(Na0.82K0.18)0.5TiO3xNaSbO3 ceramic is a promising lead-free piezoelectric candidate material.  相似文献   

7.
Nanostructured ferroxide particles with initial formula Ni0.5Zn0.5Fe2O4 are investigated. The aim was to explore the monodomain and the superparamagnetic states of the ferrospinel and the impact of the surface magnetic disorder on the magnetization processes. Mössbauer spectroscopy (MöS) demonstrated that the ion distribution follows the general formula (Zn0.5Fe0.5)A[Ni0.5Fe1.5]BO4, where A is the tetrahedral and B, the octahedral sublattice. MöS in an external magnetic field (5 T) at 4.2 K shows non-collinearity of the sublattices’ magnetic moments and deviations in the hyperfine magnetic field that could be related to a canting effect. Magnetic measurements were applied to characterize the temperature behavior of the magnetic properties and the a.c. complex magnetic susceptibility.  相似文献   

8.
We have made in situ optical microscope observation for the microstructure control driven by magnetic field in Fe-31.2Pd (at%), CoO and Nd0.5Sr0.5MnO3. These materials exhibit structural transitions, and their low-temperature phases are composed of several crystallographic domains (variants), which are separated by twinning planes. In the case of ferromagnetic Fe-31.2Pd and antiferromagnetic CoO, the magnetic field promotes the twinning plane movement. This movement gives a large strain of several percent and is essentially explained by the fact that the magnetic shear stress, which corresponds to the magnetic anisotropy energy divided by the twinning shear, is larger than the twinning stress. In the case of Nd0.5Sr0.5MnO3, the twinned microstructure of the charge-ordered phase disappears under a magnetic field in association with the melting of the charge-ordered phase.  相似文献   

9.
马玉彬 《物理学报》2009,58(7):4976-4979
研究了氧空位对La0.5Ca0.5MnO3 (LCMO)多晶块材的电输运和磁性质的影响. 随着氧空位的增加, 样品在高温段的电阻率一直增加, 并满足绝热小极化子模型, 而低温段的电阻率先下降后上升, 并出现明显的dR/dT>0的行为, 直至最后变为绝缘的. 氧空位的增加抑止了反铁磁相的出现, 使得脱氧的LCMO样品不发生反铁磁转变, 进一步增加氧空位则会抑制铁磁相. 关键词: 0.5Ca0.5MnO3')" href="#">La0.5Ca0.5MnO3 反铁磁相变 铁磁相变 脱氧  相似文献   

10.
The crystal structure and dielectric properties of 0.95K0.5Na0.5NbO3-0.05BaZrO3 (KNN-BZ) ceramic have been investigated by X-ray diffraction and dielectric measurement. A rhombohedral distortion was caused and the dielectric permittivity near Curie temperature was significantly enhanced by introducing BZ into KNN. The dielectric and conductivity properties of the sample were studied by using AC impedance spectroscopy and universal dielectric relaxation law in detail. The typical high-temperature dielectric relaxation process was confirmed to be related to the oxygen vacancies inside the ceramic. The effect of lattice distortion on the activation energy for oxygen vacancy migration in KNN-BZ was discussed by comparing with KNN and KNN-BaTiO3.  相似文献   

11.
Polycrystalline CuIn0.5Ga0.5Te2 films were deposited by flash evaporation from ingot prepared by reacting, in stoichiometric proportions, high purity Cu, In, Ga and Te elements in vacuum sealed quartz. The as-obtained films were characterized by X – ray diffraction (XRD), transmission electron microscopy (TEM) combined with energy dispersive spectroscopy (EDS). XRD and TEM results showed that the layer has a chalcopyrite-type structure, predominantly oriented along (112) planes, with lattice parameters a?=?0.61?nm and c?=?1.22?nm. The optical properties in the near - infrared and visible range 600–2400?nm have been studied. The analysis of absorption coefficient yielded an energy gap value of 1.27?eV. Photoluminescence analysis of as-grown sample shows two main emission peaks located at 0.87 and 1.19?eV at 4?K.  相似文献   

12.
Magnetic and electrical properties of well-characterized Gd0.5Ba0.5CoO2.9 have been studied carefully in order to compare them with those of other analogous cobaltates of the type Ln0.5A0.5CoO3 (Ln=La, Nd and A=Sr, Ba) which are ferromagnetic. The results show that Gd0.5Ba0.5CoO2.9, which has A-site cation ordering at room temperature, does not become a genuine ferromagnet at low temperatures, but the ferromagnetic interactions observed at 280 K give over to an antiferromagnetic (AFM) state on cooling to 230 K. The AFM state is rendered ferromagnetic on the application of high magnetic fields. The properties can be understood on the basis of phase separation induced by the large A-site cation-disorder, arising from the size mismatch.  相似文献   

13.
The structural and magnetic properties of the alloy system REIn0.5Ag0.5 [RE = Gd, Tb, Dy, Ho, Er, Tm and Yb] are reported. All these alloys (except that of Yb) crystallize in a cubic CsCl type structure at room temperature. Low temperature X-ray diffraction data does not reveal any structural phase transformation down to 8 K. On the basis of magnetic susceptibility data at a different temperature (3–300 K) and applied magnetic field (2 × 105 to 8 × 106 A m-1, it has been concluded that GdIn0.5Ag0.5 is ferromagnetic (Tc = 118 K), TbIn0.5Ag0.5 and DyIn0.5Ag0.5 are meta magnetic (TN = 66 and 30 K, respectively) and alloys involving Ho, Er, Tm and Yb are ferrimagnetic with Néel temperatures (TN) equal to 24, 22, 21 and 20 K, respectively. The evaluated effective magneton number (p) is found to be slightly larger compared to theoretical values for tripositive ions of Gd, Tb and Dy and a bit smaller for Ho, Er, Tm and Yb. The results have been qualitatively explained using appropriate theories.  相似文献   

14.
向军  沈湘黔  宋福展  刘明权 《中国物理 B》2009,18(11):4960-4965
NiZn ferrite/polyvinylpyrrolidone composite fibres were prepared by sol–gel assisted electrospinning.Ni0.5Zn0.5Fe2O4 nanofibres with a pure cubic spinel structure were obtained subsequently by calcination of the composite fibres at high temperatures.This paper investigates the thermal decomposition process,structures and morphologies of the electrospun composite fibres and the calcined Ni0.5Zn0.5Fe2O4 nanofibres at different temperatures by thermogravimetric and differential thermal analysis,x-ray diffraction,Fourier transform infrared spectroscopy and field emission scanning electron microscopy.The magnetic behaviour of the resultant nanofibres was studied by a vibrating sample magnetometer.It is found that the grain sizes of the nanofibres increase significantly and the nanofibre morphology gradually transforms from a porous structure to a necklace-like nanostructure with the increase of calcination temperature.The Ni0.5Zn0.5Fe2O4 nanofibres obtained at 1000 C for 2 h are characterized by a necklace-like morphology and diameters of 100–200 nm.The saturation magnetization of the random Ni0.5Zn0.5Fe2O4 nanofibres increases from 46.5 to 90.2 emu/g when the calcination temperature increases from 450 to 1000 C.The coercivity reaches a maximum value of 11.0 kA/m at a calcination temperature of 600 C.Due to the shape anisotropy,the aligned Ni0.5Zn0.5Fe2O4 nanofibres exhibit an obvious magnetic anisotropy and the ease magnetizing direction is parallel to the nanofibre axis.  相似文献   

15.
In this paper we report the study of the perovskites La0.7Ca0.3Mn0.5Co0.5O3 and La0.8Sr0.2Mn0.5Co0.5O3 by neutron powder diffraction at various temperatures and magnetization measurements in zero applied field and at low cooling regimes. The replacement of half Mn by Co in La0.7Ca0.3MnO3 and La0.8Sr0.2MnO3 destroys their long-range ferromagnetism exhibiting a cluster glass ferromagnetic order similar to the one observed in many cobaltites.  相似文献   

16.
Polycrystalline perovskite cobalt oxide Eu0.5Sr0.5CoO3 was prepared by the conventional solid-state reaction method. X-ray powder patterns indicated the prepared samples are pure, cubic perovskite structure (Pm3?m), and with no evidence of any secondary phases. The dc magnetization and ac susceptibility measurements were carried out to investigate the magnetic properties of the sample, and which indicated that cluster-glasses properties are suppressed with the increasing of the coercive field. We denied the possibility of spin-glasses and the existence of the Hopkinson effect in Eu0.5Sr0.5CoO3 through the temperature-dependent ac susceptibility measurements, and explained the magnetic behavior of Eu0.5Sr0.5CoO3 with the competition between magnetic anisotropy and the external magnetic field.  相似文献   

17.
The transverse laser induced thermoelectric voltage effect has been investigated in tilted La0.5Sr0.5CoO3 thin films grown on vicinal cut LaAlO3 (1 0 0) substrates when films are irradiated by pulse laser at room temperature. The detected voltage signals are demonstrated to originate from the transverse Seebeck effect as the linear dependence of voltage on tilted angle in the range of small tilted angle. The Seebeck coefficient anisotropy ΔS of 0.03 μV/K at room temperature is calculated and its distorted cubic structure is thought to be responsible for this. Films grown on a series of substrates with different tilted angles show the optimum angle of 19.8° for the maximum voltage. Film thickness dependence of voltage has also been studied.  相似文献   

18.
The crystal structure and magnetocaloric effect (MCE) of water-quenched and annealed (Mn0.5Co0.5)65Ge35 alloys were studied in this paper. A CoMnGe-single phase was formed in the water-quenched alloy, and mixture phases of CoMnGe and Mn+2O in the annealed alloy. The annealed alloy has a smaller crystal parameter than the water-quenched alloy. The Curie temperature is 275 and 298 K for the water-quenched and annealed alloys, respectively, which means that the magnetic-transition temperature in this material can be controlled by anneal. In addition, the same magnetic entropy change was found in these two alloys, even though their Curie temperatures have a significant difference.  相似文献   

19.
The sinterability of K0.5Na0.5NbO3 (KNN) ceramics by a laser beam has been investigated in the present research. A 100 W CO2 laser with a beam diameter of 0.6 mm has been used to sinter the KNN specimens prepared on a uniaxial pressing machine. The relations between laser power and thickness of densified layer, crystallographic structures and phase compositions have been studied. A comparison has been made between laser and furnace sintered KNN samples according to the SEM, XRD and XRF results. The possibility of KNN used for the layer-wise laser direct sintering 3D components has been confirmed in this paper.  相似文献   

20.
The substitutional effect of Mo on the magnetic and transport properties of double exchange ferromagnets, La0.5Sr0.5Co1−x MoxO3 (0?x?0.2) has been investigated. Substitution of 10% Mo at the Co-site of La0.5Sr0.5CoO3 decreases the Curie temperature by ∼60 K than that of the parent compound and the long-range ferromagnetic ordering disappears for x?0.2. The Mo-doped samples, however, undergo a transition from the parent metallic state to the insulating state below Tc. The insulating state is found to obey Mott's variable range hopping of conduction. The effect of Mo substitution is attributed to the factors namely, (i) the dilution of magnetic Co sublattice, (ii) the reduction of Co4+/Co3+ ratio resulting in a reduced carrier concentration and (iii) disruption of the intermediate spin structure of Co, namely Co3+: t2g5eg1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号