首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The theoretical investigation is developed for the phenomenon of second-harmonic (SH) generation by a p-polarized laser pulse at oblique incidence on a vacuum-plasma interface. We considered the simultaneous SH generation inside the plasma as well as vacuum due to the reflected component of the laser pulse. The results approved that the SH conversion efficiency drastically increases, for both transmitted and reflected components, when the incident angle approaches to its critical value. We found that the maximum SH efficiency is greater for transmitted component, however, the reflected component is more proper for technical and experimental applications.  相似文献   

2.
Studies into the suitability of a novel, widely tunable telecom L-band (1563?C1613?nm) digital supermode distributed Bragg reflector (DS-DBR) laser for spectroscopy in the mid-IR are presented. Light from the DS-DBR laser was mixed with 1064?nm radiation in a periodically poled lithium niobate (PPLN) crystal to generate mid-IR light by quasi phase matching difference frequency generation (QPM-DFG). The resultant continuous wave radiation covered the range 3000?C3200?cm?1 with powers of up to 2.6???W. The use of such laser light for spectroscopic applications was illustrated by performing absorption experiments on both narrow-band and broad-band absorbers, namely methane (CH4) and methanethiol (CH3SH). Wavelength modulation spectroscopy (WMS) on CH4 demonstrated that the modulation characteristics of the DS-DBR laser observed in the near-IR were transposed to the mid-IR and yielded a sensitivity of 3.1×10?6?cm?1?Hz?1/2 over a 47?cm path length. In the CH3SH spectrum, the absorption feature at 3040?cm?1 was identified as a potential useful region for monitoring this biomarker in exhaled breath at reduced pressures.  相似文献   

3.
We present the strict design parameters of the experiment for the 780 nm tunable continuous-wave second harmonic (SH) generation by the nonlinear resonator containing a MgO doped periodically poled LiNbO3 (MgO:PPLN) crystal. Optimization of such critical parameters, including focusing and impedance matching, more than 84% SH conversion efficiency and 3.1 W available output power at 780 nm were obtained from the fundamental wave at 1560 nm with two different input couplers. The thermal saturated behavior of the SH output power has been observed in the experiment. The beam quality factor M2 of the generated SH wave is 1.04 (1.03), and the RMS power stability is 1.29% in 3 h. The SH wave was further used to detect the D 2 transitions of Rb atom, exhibiting a fine tunable characteristic. Such laser source can be a suitable candidate in the atomic physics and quantum optics.  相似文献   

4.
An intense laser radiation (1012 to 1011 W/cm−2) focused on the solid target creates a hot (≥1 keV) and dense plasma having high ionization state. The multiple charged ions with high current densities produced during laser matter interaction have potential application in accelerators as an ion source. This paper presents generation and detection of highly stripped titanium ions (Ti) in laser produced plasma. An Nd:glass laser (KAMETRON) delivering 50 J energy (λ=0.53 μm) in 2.5 ns was focused onto a titanium target to produce plasma. This plasma was allowed to drift across a space of ∼3 m through a diagnostic hole in the focusing mirror before ions are finally detected with the help of electrostatic ion analyzer. Maximum current density was detected for the charge states of +16 and +17 of Ti ions for laser intensity of ∼1011 W/cm−2.  相似文献   

5.
The generation of lower (third) and higher harmonics of femtosecond laser radiation in plasmas produced by laser ablation of different targets with a small atomic number Z (B, Be, Li) has been investigated. The high (10−3) efficiency of third-harmonic generation was observed in plasma produced on the boron surface. Efficient third-harmonic generation was also observed in beryllium plasma using femtosecond pulses of Ti:sapphire laser radiation (λ = 790 nm) and its second harmonic (395 nm). We could tune the higher harmonics generation spectrum by tuning the crystal converter when using 395-nm radiation to be converted. It is shown that, in plasmas formed on targets with small Z, the conversion efficiency and limiting generated harmonic order depend on the delay between the ablation pulse and the pulse to be converted.  相似文献   

6.
We demonstrate the generation of high harmonics (up to the 65th order, λ=12.24 nm) of a Ti:sapphire laser radiation after the propagation of femtosecond laser pulses through the low-excited plasma produced by a picosecond prepulse radiation on the surface of different targets. High-order harmonics generated from the surface plasma of most targets showed a plateau pattern. It is assumed that the harmonic generation in these conditions occurs due to the interaction of the femtosecond pulses with the ions. The conversion efficiencies at the plateau region were varied between 1×10-7 to 8×10-6, depending on the target. The main contribution to the limitation of harmonic generation efficiency and cutoff energy was attributed to the self-defocusing of main pulse. A considerable restriction of the 27th harmonic generation was observed at different focusing conditions in the case of chromium plasma. Our observation of the resonance-induced enhancement of a single harmonic (λ=61.2 nm) at a plateau region with the efficiency of 8×10-5 in the case of In plasma can offer some expectation that analogous processes can be realized in other plasma samples in the shorter wavelength range where the highest harmonics were achieved. PACS 42.65.Ky; 52.35.Mw; 52.38.-r  相似文献   

7.
We analyze the interference between two processes of higher harmonic generation (HHG) in plasma containing mixtures of different materials (silver and gold nanoparticles, as well as graphite and boron). We find that, for mixtures and individual ingredients, the limiting orders of generated harmonics of laser radiation approximately coincide with one another. At the same time, for plasma torches formed by the ablation of mixtures of materials, the HHG efficiency is considerably reduced compared to the case of the frequency transformation of laser radiation in individual ingredients of these mixtures as a result of destructive interference in the former case. We demonstrate a considerable spectral broadening of harmonics generated in laser plasma with pulses passed through filaments formed in air. In this case, the HHG efficiency increases fourfold (from 3 × 10−6 to 1.2 × 10−5) compared to the case of radiation free of phase and frequency modulation. The generation of harmonics is also observed upon the passage of 120-fs laser pulses through plasma containing fullerenes. In this case, the limiting value of generated harmonics achieves the 33rd order. The efficiency of harmonics in fullerene plasma considerably exceeds a similar process in silver plasma.  相似文献   

8.
Nuclear processes in the presence of the superstrong laser fields of a picosecond laser plasma are experimentally studied at a radiation intensity of 2 × 1018 W/cm2 on a Neodim laser setup with a power of 10 TW. Experimental data regarding neutron generation on the surface of a deuterated target (CD2)n owing to the thermonuclear fusion 2H(d,n)3He and the neutron generation on the Be target due to the photonuclear reaction 9Be(γ,n)2α are presented. Neutron yields Y n of 106 and 103 per 4π sr per laser pulse are obtained for the (CD2)n and Be targets, respectively. The alpha-particle yield is measured for the first time in the neutron-free thermonuclear reactions 11B + H → 34He in the laser plasma on the surface of the composite B + (CH2)n targets. The alpha-particle yield is 103 per 4π sr per laser pulse.  相似文献   

9.
Flux of X-ray radiation emitted from the Ta plasma, produced by the fundamental (1ω) and the third harmonic (3ω) frequencies of the high-power iodine laser PALS, was studied in dependence on the laser focus position. One or two (three) maxima, corresponding to the hard or soft component of the emitted spectrum, can appear, according to the experimental conditions. These dependencies are compared with those published by other authors, and also with our results concerning the highly charged ion generation. At laser intensities above I L~ 1014 W/cm2, the participation of non-linear processes in the pre-formed plasma was confirmed.  相似文献   

10.
Didenko  A. N.  Rashchikov  V. I.  Fortov  V. E. 《Technical Physics》2011,56(10):1535-1538
The mechanism of generation of terahertz radiation upon irradiation of a target by short (∼ 0.1 ns) high-intensity laser pulses (I ∼ 1018−1019 W cm−2) is investigated by numerical simulation using the relativistic electromagnetic PIC code. The interaction of such a pulse with the target, a plasma is formed on it. Electrons emitted from the plasma form a virtual cathode whose oscillations are determined not only by their self-field, but also by the field of ions of the plasma. Generation occurs in the terahertz frequency range with the efficiency thrice as high as in the absence of ions (i.e., with traditional reditron generation mechanism). The explanation for this effect is also given.  相似文献   

11.
X-ray spectra from Teflon targets irradiated by laser pulses with a duration of 60 fs to 1 ps have been investigated experimentally. It is shown that, when the contrast of the laser pulse is sufficiently low, the effect of self-focusing of the main laser pulse in the plasma produced by the prepulse can significantly enhance the generation efficiency of fast particles. In this case, ions with energies as high as ~1 MeV are observed at relatively low laser intensities, q las ≈ (4–6) × 1016 W/cm2.  相似文献   

12.
The characteristics of intra-cavity distributed Bragg reflector (DBR) quasi-phase-matched (IDQPM) second-harmonic-generation (SHG) lasers are theoretically studied. In the IDQPM-SHG laser, a QPM device and a DBR for feedback are separately fabricated on the same substrate with the QPM device placed between the DBR and a semiconductor laser. The threshold current of the IDQPM-SHG laser depends on the coupling efficiency between the laser diode and the QPM waveguide and the reflectivity of the DBR. The SH output of the IDQPM-SHG laser is strongly dependent on the generalized SHG conversion efficiency, x. This laser has the potential to attain an SH output over a 30-mW using a currently available 50-mW semiconductor laser for the fundamental light source, when highly efficient QPM device (x=2.2 W−1) is used. Its tolerance for various deviations from the initial design and the problems to develop a commercially available IDQPM-SHG laser are also discussed.  相似文献   

13.
Microdroplets of 15-μm diameter are subjected to ultra-short laser pulses of intensities up to 1015Wcm−2 to produce hot dense plasma. The hot electrons produced in the microdroplet plasma result in efficient generation of hard X-rays in the range 50–150keV at an irradiance as low as 8×1014Wcm−2. The X-ray source efficiency is estimated to be about 2 ×10−7%. A prepulse that is about 11ns ahead of the main pulse strongly influences the droplet plasma and the resulting X-ray emission. For a similar laser prepulse and intensity, no measurable hard X-ray emission is observed when the laser is focused on a solid target of similar composition and this indicates that liquid droplet targets are best suited for hard X-ray generation in laser–plasma interactions.  相似文献   

14.
Bai XuYongda Li  Lijun Song 《Optik》2012,123(23):2183-2186
One-dimensional particle-in-cell (PIC) program is used to simulate the generation of high power terahertz (THz) emission from the interaction of an ultrashort intense laser pulse with underdense plasma. The spectra of THz radiation are discussed under different laser intensity, pulse width, incident angle and density scale length. High-amplitude electron plasma wave driven by a laser wakefield can produce powerful THz emission through linear mode conversion under certain conditions. With incident laser intensity of 1018 W/cm2, the generated emission is computed to be of the order of several MV/cm field and tens of MW level power. The corresponding energy conversion efficiency is several ten thousandths, which is higher then the efficiency of other THz source and suitable for the studies of THz nonlinear physics.  相似文献   

15.
Experimental results on the effect of picosecond and nanosecond prepulses on the neutron yield in laser picosecond plasma on the surface of solid (CD2)n targets at a laser intensity of 1018 W/cm2 are presented. It is demonstrated that the picosecond (nanosecond) prepulse decreases the neutron yield at a laser prepulse intensity of higher than 1013 (1012) W/cm2. The estimates indicate three possible mechanisms for the realization of the observed effect: stimulated Mandelstam-Brillouin scattering of the main pulse by the preplasma, channels of the generation of fast ions, and their possible deceleration in the preplasma. The results of calculations are compared with the experimental data.  相似文献   

16.
The analysis of the heat spreading in the single-heterostructure GaAs-Ga1-x Al x As laser diode supplied with short current pulses (in the case, however, when the adiabatic approximation is no longer valid) at room temperature is presented in this paper. Relations are derived, describing the time-dependent temperature rise within the volume of the laser diode. The calculations are carried out for a typical SH laser diode. It turns out that in the duration of the short current pulses (t I=200 ns,j=1.5 × 104A cm–2) the increase in junction temperature of the typical SH laser diode amounts to about 6.1 K. This increase leads to an increase of about 9% in the threshold current, to a decrease of about 18% in the laser radiation intensity, and to a shift of the spontaneous radiation band and of the stimulated radiation modes of about 1.9 nm and 0.22 nm, respectively, during each current pulse.  相似文献   

17.
Spectra of laser-induced plasmas at low laser energies and intensities (around 100 mJ and 1010 W cm–2 respectively) have been recorded in the spectral range of 20 to 100 nm for different target materials, laser intensities at the target and laser wavelengths. For heavy target materials, a broadband spectrum with a spectral maximum typically around 30 nm is obtained. This broadband radiation source is well suited for photoionization processes and the generation of short wavelength inner-shell photoionization lasers. For the cadmium-photoionization laser, the influence of different soft X-ray spectra on the laser energy has been investigated. The potential of laser plasma soft X-ray sources for scientific and technical applications is briefly reviewed.Dedicated to Prof. Dr. Herbert Welling on the occasion of his 60th birthday  相似文献   

18.
It is proposed to use a high rate of collisional ionization in a superdense laser plasma to generate incoherent femtosecond X-ray pulses. The calculations indicate that the use of picosecond laser pulses with a contrast of about 1010 will allow the generation of an X-ray pulse with a duration of about 10 fs. The adequacy of the proposed model of the excitation of linear X-ray radiation from the plasma has been tested in the experiments with a picosecond laser of a moderately high contrast.  相似文献   

19.
We realized a series of experiments to study the physics of laser–plasma interaction in an intensity regime of interest for the novel “Shock Ignition” approach to Inertial Fusion. Experiments were performed at the Prague Asterix Laser System laser in Prague using two laser beams: an “auxiliary” beam, for pre-plasma creation, with intensity around 7?×?1013?W/cm2 (250?ps, 1ω, λ?=?1315?nm) and the “main” beam, up to 1016?W/cm (250?ps, 3ω, λ?=?438?nm), to launch a shock. The main goal of these experiments is to study the process of the formation of a very strong shock and the influence of hot electrons in the generation of very high pressures. The shock produced by the ablation of the plastic layer is studied by shock breakout chronometry. The generation of hot electrons is analyzed by imaging Kα emission.  相似文献   

20.
Using a narrowed spectrum Nd3+ glass laser, we show that besides parametric excitation of ion-acoustic waves, another different mechanism contributes at the same time to the second harmonic line generation in a laser created plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号