首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Treatment of (trimpsi)V(CO)(2)(NO) (trimpsi = (t)BuSi(CH(2)PMe(2))(3)) with 1 equiv of PhICl(2) or C(2)Cl(6) or 2 equiv of AgCl affords (trimpsi)V(NO)Cl(2) (1) in moderate yields. Likewise, (trimpsi)V(NO)Br(2) (2) and (trimpsi)V(NO)I(2) (3) are formed by the reactions of (trimpsi)V(CO)(2)(NO) with Br(2) and I(2), respectively. The complexes (trimpsi)M(NO)I(2)(PMe(3)) (M = Nb, 4; Ta, 5) can be isolated in moderate to low yields when the (trimpsi)M(CO)(2)(NO) compounds are sequentially treated with 1 equiv of I(2) and excess PMe(3). The reaction of (trimpsi)V(CO)(2)(NO) with 2 equiv of ClNO forms 1 in low yield, but the reactions of (trimpsi)M(CO)(2)(NO) (M = Nb, Ta) with 1 equiv of ClNO generate (trimpsi)M(NO)(2)Cl (M = Nb, 6; Ta, 7). Complexes 6 and 7 are thermally unstable and decompose quickly at room temperature; consequently, they have been characterized solely by IR and (31)P[(1)H] NMR spectroscopies. All other new complexes have been fully characterized by standard methods, and the solid-state molecular structures of 1.3CH(2)Cl(2), 4.(3/4)CH(2)Cl(2), and 5.THF have been established by single-crystal X-ray diffraction analyses. A convenient method of generating Cl(15)NO has also been developed during the course of these investigations.  相似文献   

2.
The reaction of the cluster salts [Cp(2*) Nb(CO)(2)](n)[Co(11)Te(7)(CO)(10)] (Cp*=C(5)Me(5); n=1, 2) with excess PMe(2)Ph gave the neutral, dark brown clusters [Co(11)Te(7)(CO)(6)(PMe(2)Ph)(4)] (5) and [Co(11)Te(7)(CO)(5)(PMe(2)Ph)(5)] (6) with 147 metal valence electrons. The new compounds were characterized by IR spectroscopy, elemental analyses, and mass spectrometry. The molecular structure of 6 was determined by X-ray crystallography. Like its precursor anion, it consists of a pentagonal-prismatic [Co(11)Te(7)] core, but with a ligand sphere composed of five CO and five PMe(2)Ph ligands. Detailed electrochemical studies of both reactions reveal that a stepwise substitution of CO ligands in the initial cluster anions takes place leading to intermediate [Co(11)Te(7)(CO)(10-m)(PMe(2)Ph)(m)](n-) ions (m=1-5; n=1, 2). Each of these intermediates is distinguished by at least one oxidation and two reduction waves, giving rise to a total of 21 redox couples and 27 electroactive species. The electron sponge character of the new compounds is particularly pronounced in 5, which exhibits charges n between +1 and -4 corresponding to metal valence electron counts of between 146 and 151.  相似文献   

3.
The heteronuclear Cp2Nb(CO)(μ-CO)Mn(CO)4 (I), Cp2Nb(CO)(μ-H)Ni(CO)3 (II) and [Cp2Nb(CO)(μ-H)]2M(CO)4 (III, M = Mo;IV, M = W) complexes were prepared by reaction of Cp2NbBH4/Et3N with Mn2(CO)10 in refluxing toluene, direct reaction of Cp2NbBH4 with Ni(CO)4 in ether, and reaction of Cp2NbBH4/Et3N with M(CO)5. THF complexes (M = Mo or W) in THF/benzene mixture. An X-ray investigation of compounds I–III was performed. It is established that in I the bonding between Mn(CO)5 and Cp2Nb(CO) (with the angle (α) between the ring planes being 44.2(5)°) fragments takes place via a direct NbMn bond (3.176(1) Å) and a highly asymmetric carbonyl bridge (MnCco 1.837(5) Å, NbCco 2.781(5) Å). On the other hand, in complex II the sandwich Cp2Nb(CO)H molecule (angle α = 37.8°) is combined with the Ni(CO)3 group generally via a hydride bridge (NbH 1.83 Å, NiH 1.68 Å, NbHNi angle 132.7°) whereas the large Nb?Ni distance, 3.218(1) Å, shows the weakening or even absence of the direct NbNi bond. Similarly, in complex III two Cp2Nb(CO)H molecules (with α angles equal to 41.4 and 43.0°, respectively) are joined to the Mo(CO)4 group via the hydride bridges (NbH 1.83 and 1.75 Å and MoH 2.04 and 2.06 Å) producing a cis-form. The direct NbMo bonds are probably absent, since the Nb?Mo distances are rather long (3.579 and 3.565 Å). The effect of electronic and steric factors on the structure of heteronuclear niobocene carbonyl derivatives is discussed.  相似文献   

4.
A neutral selenium donor ligand, [CpFe(CO)(2)P(Se)(OR)(2)] is used for the construction of Cu(I) and Ag(I) complexes with a well-defined coordination environment. Four clusters [M{CpFe(CO)(2)P(Se)(OR)(2)}(3)](PF(6)), (where M = Cu, R = (n)Pr, ; R = (i)Pr, and M = Ag, R = (n)Pr, ; R = (i)Pr, ) are isolated from the reaction of [M(CH(3)CN)(4)(PF(6))] (where M = Cu or Ag) and [CpFe(CO)(2)P(Se)(OR)(2)] in a molar ratio of 1 : 3 in acetonitrile at 0 degrees C. The reaction of [CpFe(CO)(2)P(Se)(O(i)Pr)(2)] with cuprous halides in acetone produce two mixed-metal, Cu(I)(2)Fe(II)(2) clusters, [Cu(mu-X) {CpFe(CO)(2)P(Se)(O(i)Pr)(2)}](2) (X = Cl, ; Br, ). All six clusters have been fully characterized spectroscopically ((1)H, (13)C, (31)P, and (77)Se NMR, IR), and by elemental analyses. X-Ray crystal structures of and consist of discrete cationic clusters in which three iron-selenophosphito fragments are linked to the central copper or silver atom via selenium atoms. Both clusters and crystallize in the noncentrosymmetric, hexagonal space group P6[combining macron]2c. The coordination geometry around the copper or silver atom is perfect trigonal-planar with Cu-Se and Ag-Se distances, 2.3505(7) and 2.5581(7) A, respectively. X-Ray crystallography also reveals that each copper center in neutral heterometallic clusters and is trigonally coordinated to two halide ions and a selenium atom from the selenophosphito-iron moiety. The structures can also be delineated as a dimeric unit which is generated by an inversion center and has a Cu(2)X(2) parallelogram core. The dihedral angle between the Cu(2)X(2) plane and the plane composed of Cp ring is found to be 24.62 and 84.58 degrees for compound and , respectively. Hence the faces of two opposite Cp rings are oriented almost perpendicular to the Cu(2)X(2) plane in , but are close to be parallel in . This is the first report of the coordination chemistry of the anionic selenophosphito moiety [(RO)(2)PSe](-), the conjugated base of a secondary phosphine selenide, which acts as a bridging ligand with P-coordination on iron and Se-coordination to copper or silver.  相似文献   

5.
The reaction of [CpFe(CO)2]2 with NH4Se2P(OR)2 yields a novel reagent Cp(CO)2FeP(Se)(OR)2, which has demonstrated coordination properties at the Se center to form heterometallic clusters as well as reactivity at the Se site toward C-based electrophiles.  相似文献   

6.
The reactivity of (eta(3)-allyl)palladium chloro dimers [(1-R-eta(3)-C(3)H(4))PdCl](2) (R = H or Me) towards a sterically hindered diphosphazane ligand [EtN{P(OR)(2)}(2)] (R = C(6)H(3)(Pr(i))(2)-2,6), has been investigated under different reaction conditions. When the reaction is carried out using NH(4)PF(6) as the halide scavenger, the cationic complex [(1-R-eta(3)-C(3)H(4))Pd{EtN(P(OR)(2))(2)}]PF(6) (R = H or Me) is formed as the sole product. In the absence of NH(4)PF(6), the initially formed cationic complex, [(eta(3)-C(3)H(5))Pd{EtN(P(OR)(2))(2)}]Cl, is transformed into a mixture of chloro bridged complexes over a period of 4 days. The dinuclear complexes, [(eta(3)-C(3)H(5))Pd(2)(mu-Cl)(2){P(O)(OR)(2)}{P(OR)(2)(NHEt)}] and [Pd(mu-Cl){P(O)(OR)(2)}{P(OR)(2)(NHEt)}](2) are formed by P-N bond hydrolysis, whereas the octa-palladium complex [(eta(3)-C(3)H(5))(2-Cl-eta(3)-C(3)H(4))Pd(4)(mu-Cl)(4)(mu-EtN{P(OR)(2)}(2))](2), is formed as a result of nucleophilic substitution by a chloride ligand at the central carbon of an allyl fragment. The reaction of [EtN{P(OR)(2)}(2)] with [(eta(3)-C(3)H(5))PdCl](2) in the presence of K(2)CO(3) yields a stable dinuclear (eta(3)-allyl)palladium(I) diphosphazane complex, [(eta(3)-C(3)H(5))[mu-EtN{P(OR)(2)}(2)Pd(2)Cl] which contains a coordinatively unsaturated T-shaped palladium center. This complex exhibits high catalytic activity and high TON's in the catalytic hydrophenylation of norbornene.  相似文献   

7.
The discovery of a Nb(III)-mediated catalytic hydrogenation of internal alkynes to (Z)-alkenes that proceeds through an unprecedented mechanism is reported. The mechanistic proposal involves initial reduction of the alkyne by the Nb(III) complex (BDI)Nb(N(t)Bu)(CO)(2) to provide a Nb(V) metallacyclopropene, itself capable of σ-bond metathesis reactivity with H(2). The resulting alkenyl hydride species then undergoes reductive elimination to provide the (Z)-alkene product and regenerate a metal complex in the Nb(III) oxidation state. Support for the proposed mechanism is derived from (i) the dependence of the product selectivity on the relative concentrations of CO and H(2), (ii) the isolation of complexes closely related to those proposed to be part of the catalytic cycle, (iii) H/D crossover experiments, and (iv) DFT studies of multiple possible reaction pathways.  相似文献   

8.
Treatment of [Et(4)N][M(CO)(6)] (M = Nb, Ta) with I(2) in DME at -78 degrees C produces solutions of the bimetallic anions [M(2micro-I)(3)(CO)(8)](-). Addition of the tripodal phosphine (t)BuSi(CH(2)PMe(2))(3) (trimpsi) followed by refluxing affords (trimpsi)M(CO)(3)I [M = Nb (1), Ta (2)], which are isolable in good yields as air-stable, orange-red microcrystalline solids. Reduction of these complexes with 2 equiv of Na/Hg, followed by treatment with Diazald in THF, results in the formation of (trimpsi)M(CO)(2)(NO) [M = Nb (3), Ta (4)] in high isolated yields. The congeneric vanadium complex, (trimpsi)V(CO)(2)(NO) (5), can be prepared by reacting [Et(4)N][V(CO)(6)] with [NO][BF(4)] in CH(2)Cl(2) to form V(CO)(5)(NO). These solutions are treated with 1 equiv of trimpsi to obtain (eta(2)-trimpsi)V(CO)(3)(NO). Refluxing orange THF solutions of this material affords 5 in moderate yields. Reaction of (trimpsi)VCl(3)(THF) (6) with 4 equiv of sodium naphthalenide in THF in the presence of excess CO provides [Et(4)N][(trimpsi)V(CO)(3)] (7), (trimpsi)V(CO)(3)H, and [(trimpsi)V(micro-Cl)(3)V(trimpsi)][(eta(2)-trimpsi)V(CO)(4)].3THF ([8][9].3THF). All new complexes have been characterized by conventional spectroscopic methods, and the solid-state molecular structures of 2.(1)/(2)THF, 3-5, and [8][9].3THF have been established by X-ray diffraction analyses. The solution redox properties of 3-5 have also been investigated by cyclic voltammetry. Cyclic voltammograms of 3 and 4 both exhibit an irreversible oxidation feature in CH(2)Cl(2) (E(p,a) = -0.71 V at 0.5 V/s for 3, while E(p,a) = -0.55 V at 0.5 V/s for 4), while cyclic voltammograms of 5 in CH(2)Cl(2) show a reversible oxidation feature (E(1/2) = -0.74 V) followed by an irreversible feature (0.61 V at 0.5 V/s). The reversible feature corresponds to the formation of the 17e cation [(trimpsi)V(CO)(2)(NO)](+) ([5](+)()), and the irreversible feature likely involves the oxidation of [5](+)() to an unstable 16e dication. Treatment of 5 with [Cp(2)Fe][BF(4)] in CH(2)Cl(2) generates [5][BF(4)], which slowly decomposes once formed. Nevertheless, [5][BF(4)] has been characterized by IR and ESR spectroscopies.  相似文献   

9.
Alkoxo complexes [Re(OR)(CO)(3)(N-N)] (R=Me, Et, tBu; N-N=2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'bipyridine (bipy'), 1,10-phenanthroline (phen)) and [M(OMe)(eta(3)-allyl)(CO)(2)(phen)] (M=Mo, W) have been synthesized in good yields and using mild conditions by the reaction of sodium alkoxides with [Re(OTf)(CO)(3)(N-N)] and [MCl(eta(3)-allyl)(CO)(2)(phen)] precursors. These have been characterized by IR and NMR spectroscopy as well as by X-ray diffraction for [W(OMe)(eta(3)-allyl)(CO)(2)(phen)] (10). The reactions of the molybdenum and rhenium alkoxo complexes with isocyanates, R'NCO, yield [L(n)M[N(R')C(O)OR]] complexes; the carbamate ligand, which results from an R'NCO insertion into the Mbond;OR bond, is monodentate through the nitrogen atom. The solid-state structures of Mo and Re examples have been determined by X-ray diffraction. The geometry around the carbamate nitrogen of these compounds is planar, and the distances indicate delocalization of the nitrogen lone pair involving mainly the carbonyl groups. Experiments carried out with the Re complexes showed that aryl isocyanates are more reactive than their alkyl counterparts, and that bulky R' groups led to slow rates of insertion. Insertion reactions were also observed with isothiocyanates, although here it is the Sbond;C bond that inserts into the Mbond;OR bond, and the resulting ligand is bound to the metal by sulfur. Competition experiments with the Re compounds indicate that isocyanates are more reactive than isothiocyanates towards the Rebond;OR bonds. Tetracyanoethylene inserts into the Rebond;OMe bond of [Re(OMe)(CO)(3)(bipy')], forming a complex with a 2-methoxytetracyanoethyl ligand; the structure of which was determined by X-ray diffraction. The formation of the xanthato complex [Re(SC(S)OtBu)(CO)(3)(bipy)] (20) by reaction of [Re(OTf)(CO)(3)(bipy)] with CS(2) and NaOtBu, but not by the reaction of CS(2) and [Re(OtBu)(CO)(3)(bipy)] (5 a), suggests that the insertion reactions do not take place by ionization of the alkoxo complexes to give the free alkoxide ion.  相似文献   

10.
The cyclostibane R(4)Sb(4)(1)(R = 2-(Me(2)NCH(2))C(6)H(4)) was synthesized by reduction of RSbCl(2) with Mg in THF or with Na in liquid NH(3). The reaction of 1 with [W(CO)(5)(THF)] gives the stibinidene complex RSb[W(CO)(5)](2)(2). RSbCl(2) and (RSbCl)(2)E [E = O (6), E = S (8)] react with KOH or Na(2)S in toluene/water to give the heterocycles (RSbE)(n)[E = O, n= 3 (3); E = S, n= 2 (4)]. The chalcogeno-bridged compounds of the type (RSbCl)(2)E [E = O (6), E = S (8)] were synthesized by reaction of RSbCl(2) with KOH or Na(2)S in toluene/water, but also by reaction of RSbCl(2) with the heterocycles (RSbE)(n). The compounds (RSbI)(2)O (7) and (RSbBr)(2)S (9) were prepared via halogen-exchange reactions between (RSbCl)(2)E and NaI (E = O) or KBr (E = S) or by reactions between RSbI(2) and KOH or RSbBr(2) and Na(2)S. The reaction of cyclo-(RSbS)(2) with W(CO)(5)(THF) in THF results in trapping of the cis isomer in cyclo-(RSbS)(2)[W(CO)(5)](5). The solution behaviour of the compounds was investigated by (1)H and (13)C NMR spectroscopy. The molecular structures of compounds 1-7 and 9 were determined by single-crystal X-ray diffraction.  相似文献   

11.
The reaction of Mn(2)(CO)(7)(mu-S(2)) with [CpNi(CO)](2) yielded the paramagnetic new compound Cp(2)Ni(2)Mn(CO)(3)(mu(3)-S)(2) (1) and a new hexanuclear metal product Cp(2)Ni(2)Mn(4)(CO)(14)(mu(6)-S(2))(mu(3)-S)(2) (2). Structurally, compound 1 contains two triply bridging sulfido ligands on opposite sides of an open Ni(2)Mn triangular cluster. EPR and temperature-dependent magnetic susceptibility measurements of 1 show that it contains one unpaired electron. The electronic structure of 1 was determined by Fenske-Hall molecular orbital calculations which show that the unpaired electron occupies a low lying antibonding orbital delocalized unequally across the three metal atoms. The selenium homologue Cp(2)Ni(2)Mn(CO)(3)(mu(3)-Se)(2) (3) was obtained from the reaction of a mixture of Mn(2)(CO)(10) and [CpNi(CO)](2) with elemental selenium and Me(3)NO.2H(2)O. It also has one unpaired electron. Compound 1 reacted with elemental sulfur to yield the dinickeldimanganese compound, Cp(2)Ni(2)Mn(2)(CO)(6)(mu(4)-S(2))(mu(4)-S(5)), 4, which can also be made from the reaction of Mn(2)(CO)(7)(mu-S(2)) with [CpNi(CO)](2) and sulfur. Compound 4 was converted back to 1 by sulfur abstraction using PPh(3). The reaction of Mn(2)(CO)(10) with [CpNi(CO)](2) in the presence of thiirane yielded the ethanedithiolato compound CpNiMn(CO)(3)(mu-SCH(2)CH(2)S) (5), which was also obtained from the reaction of Mn(4)(CO)(15)(mu(3)-S(2))(mu(4)-S(2)) with [CpNi(CO)](2) in the presence of thiirane. Compound 5 reacted with additional quantities of thiirane to yield the new compound CpNiMn(CO)(3)[mu-S(CH(2)CH(2)S)(2)], 6, which contains a 3-thiapentanedithiolato ligand that bridges the two metal atoms. Compound 6 was also obtained from the reaction of Mn(2)(CO)(10) with [CpNi(CO)](2) and thiirane. The molecular structures of the new compounds 1-6 were established by single-crystal X-ray diffraction analyses.  相似文献   

12.
The reactions between triphenylbismuth, salicylic acid, and the metal alkoxides M(OCH(2)CH(3))(5) (M = Nb, Ta) or Ti[OCH(CH(3))(2)](4) have been investigated under different reaction conditions and in different stoichiometries. Six novel heterobimetallic bismuth alkoxy-carboxylate complexes have been synthesized in good yield as crystalline solids. These include Bi(2)M(2)(sal)(4)(Hsal)(4)(OR)(4) (M = Nb, Ta; R = CH(2)CH(3), CH(CH(3))(2)), Bi(2)Ti(3)(sal)(8)(Hsal)(2), and Bi(2)Ti(4)(O(i)Pr)(sal)(10)(Hsal) (sal = O(2)CC(6)H(4)-2-O; Hsal = O(2)CC(6)H(4)-2-OH). The complexes have been characterized spectroscopically and by single-crystal X-ray diffraction. Compounds of the group V transition metals contain metal ratios appropriate for precursors of ferroelectric materials. The molecules exhibit excellent solubility in common organic solvents and good stability against unwanted hydrolysis. The nature of the thermal decomposition of the complexes has been explored by thermogravimetric analysis and powder X-ray diffraction. We have shown that the complexes are converted to the corresponding oxide by heating in an oxygen atmosphere at 500 degrees C. The mass loss of the complexes, as indicated by thermogravimetric analysis, and the resulting unit cell parameters of the oxides are consistent with the formation of the desired heterobimetallic oxide. The complexes decomposed to form the bismuth-rich phases Bi(4)Ti(3)O(12) and Bi(5)Nb(3)O(15) as well as the expected oxides BiMO(4) (M = Nb, Ta) and Bi(2)Ti(4)O(11).  相似文献   

13.
The reaction of [Co(2)(CO)(8)] with (CF(3))(3)BCO in hexane leads to the Lewis acid-base adduct [Co(2)(CO)(7)CO--B(CF(3))(3)] in high yield. When the reaction is performed in anhydrous HF solution [Co(CO)(5)][(CF(3))(3)BF] is isolated. The product contains the first example of a homoleptic metal pentacarbonyl cation with 18 valence electrons and a trigonal-bipyramidal structure. Treatment of [Co(2)(CO)(8)] or [Co(CO)(3)NO] with NO(+) salts of weakly coordinating anions results in mixed crystals containing the [Co(CO)(5)](+)/[Co(CO)(2)(NO)(2)](+) ions or pure novel [Co(CO)(2)(NO)(2)](+) salts, respectively. This is a promising route to other new metal carbonyl nitrosyl cations or even homoleptic metal nitrosyl cations. All compounds were characterized by vibrational spectroscopy and by single-crystal X-ray diffraction.  相似文献   

14.
Ten 1:1 and 2:1 complexes of [Mn(CO)(3)](+) and [Re(CO)(3)](+) with [Nb(6)O(19)](8)(-) and [Ta(6)O(19)](8)(-) have been isolated as potassium salts in good yields and characterized by elemental analysis, (17)O NMR and infrared spectroscopy, and single-crystal X-ray structure determinations. Crystal data for 1 (t-Re(2)Ta(6)): empirical formula, K(4)Na(2)Re(2)C(6)Ta(6)O(35)H(20), monoclinic, space group, C2/m, a = 17.648(3) A, b = 10.056(1) A, c = 13.171(2) A, beta = 112.531(2) degrees, Z = 2. 2 (t-Re(2)Nb(6)): empirical formula, K(6)Re(2)C(6)Nb(6)O(38)H(26), monoclinic, space group, C2/m, a = 17.724(1) A, b = 10.0664(6) A, c = 13.1965(7) A, beta = 112.067(1) degrees, Z = 2. 3 (t-Mn(2)Nb(6)): empirical formula, K(6)Mn(2)C(6)Nb(6)O(37)H(24), monoclinic, space group, C2/m, a = 17.812(2) A, b = 10.098(1) A, c = 13.109(2) A, beta = 112.733(2) degrees, Z = 2. 4 (c-Mn(2)Nb(6)): empirical formula, K(6)Mn(2)C(6)Nb(6)O(50)H(50), triclinic, space group, P1, a = 10.2617(6) A, b = 13.4198(8) A, c = 21.411(1) A, alpha = 72.738(1) degrees, beta = 112.067(1) degrees, gamma = 83.501(1) degrees, Z = 2. 5 (c-Re(2)Nb(6)): empirical formula, K(6)Re(2)C(6)Nb(6)O(54)H(58), monoclinic, space group, P2(1)/c, a = 21.687(2) A, b = 10.3085(9) A, c = 26.780(2) A, beta = 108.787(1) degrees, Z = 4. The complexes contain M(CO)(3) groups attached to the surface bridging oxygen atoms of the hexametalate anions to yield structures of nominal C(3)(v)() (1:1), D(3)(d)() (trans 2:1), and C(2)(v)() (cis 2:1) symmetry. The syntheses are carried out in aqueous solution or by aqueous hydrothermal methods, and the complexes have remarkably high thermal, redox, and hydrolytic stabilities. The Re-containing compounds are stable to 400-450 degrees C, at which point CO loss occurs. The Mn compounds lose CO at temperatures above 200 degrees C. Cyclic voltammetry of all complexes in 0.1 M sodium acetate show no redox behavior, except an irreversible oxidation process at approximately 1.0 V vs. Ag/AgCl. In contrast to the parent hexametalate anions that are stable only in alkaline (pH >10) solution, the new complexes are stable, at least kinetically, between pH 4 and pEta approximately 12.  相似文献   

15.
The synthesis and characterization of nine new heteroleptic alkoxides of niobium is described. Metathesis reactions of Nb(2)Cl(10) with (t)BuCH(2)OH and pyridine (py) or 4-dimethylaminopyridine (DMAP) affords monomeric octahedral complexes Nb(OCH(2)(t)Bu)(5)py (1) and Nb(OCH(2)(t)Bu)(5)DMAP (2), respectively, in high yields (>60%). The same reaction with (t)BuOH resulted in a chloro functionalized alkoxide Nb(O(t)Bu)(4)pyCl (3) and could not be pushed to complete removal of remaining Cl(-) ligand. The introduction of a chelating bidental ligand 3,3,3-trifluoro-1-(pyridine-2-yl)propen-2-ol (2-PyCHCOHCF(3)) (4') in the dimeric framework of Nb(2)(O(i)Pr)(10) (4') produced a heteroleptic, monomeric niobium complex Nb(O(i)Pr)(4)(2-PyCHCOCF(3)) (4) with significantly enhanced stability and volatility. As a comparison to (4), five different heteroaryl systems (5-9) with the same side chain have been synthesized and examined in order to understand the influence upon physio-chemical properties. All the new compounds (1-9) have been characterized by microanalysis, variable temperature multinuclear NMR spectroscopy, mass spectrometry, thermal analysis and single crystal X-ray diffraction studies ((3), (4) and (9)). The molecular structure of (3) revealed mononuclear species with Nb atoms present in the distorted octahedral environment of four (t)BuO, one chloride and one pyridine ligand. Compounds (4) and (9) consisting of four (i)PrO and a trifluoroheteroarylenolate exhibited a stronger distortion in the molecular geometry due to the rigidity of chelating β-alkenolate moiety.  相似文献   

16.
The atomic alignment effect has been studied for the dissociative energy transfer reaction of metal carbonyls (Fe(CO)(5), Ni(CO)(4)) with the oriented Ar ((3)P(2), M(J) = 2). The emission intensity from the excited metal products (Fe*, Ni*) has been measured as a function of the atomic alignment in the collision frame. The selectivity of the atomic orbital alignment of Ar ((3)P(2), M(J) = 2) (rank 2 moment, a(2)) is found to be opposite for the two reaction systems; the Fe(CO)(5) reaction is favorable at the Π configuration (positive a(2)), while the Ni(CO)(4) reaction is favorable at the Σ configuration (negative a(2)). Moreover, a significant spin alignment effect (rank 4 moment, a(4)) is recognized only in the Ni(CO)(4) reaction. The atomic alignment effect turns out to be essentially different between the two reaction systems; the Fe(CO)(5) reaction is controlled by the configuration of the half-filled 3p atomic orbital of Ar ((3)P(2)) in the collision frame (L dependence), whereas the Ni(CO)(4) reaction is controlled by the configuration of the total angular moment J (including spin) of Ar ((3)P(2)) in the collision frame (J dependence). As the origin of J dependence observed only in the Ni(CO)(4) reaction, the correlation (and/or the interference) between two electron exchange processes via the electron rearrangements is proposed.  相似文献   

17.
Various products of the reaction of [E(ddp)] (ddp=2-{(2,6-diisopropylphenyl)amino}-4-{(2,6-diisopropylphenyl)imino}-2-pentene; E=Al, Ga) with Pt(0) and Pd(0) olefin complexes are reported. Thus, the reaction of [Pt(cod)(2)] (cod=1,5-cyclooctadiene) with two equivalents of [Ga(ddp)] yields [Pt(1,3-cod){Ga(ddp)}(2)] (1), whereas treatment of [Pd(2)(dvds)(3)] (dvds=1,1,3,3-tetramethyl1,3-divinyldisiloxane) with [E(ddp)] leads to the monomeric compounds [(dvds)Pd{E(ddp)}] (E=Ga (2 a), Al (2 b)) by substitution of the bridging dvds ligand. Both 1 and 2 a readily react with strong pi-acceptor ligands such as CO or tBuNC to give the dimeric compounds [M{mu(2)-Ga(ddp)}(L)] (L=CO, tBuNC; M=Pt (3 a, 5 a), Pd (3 b, 5 b)), respectively. Based on (1)H NMR spectroscopic data, [Pt{Ga(ddp)}(2)(CO)] is likely to be an intermediate in the formation of 3 a. Furthermore, reactions of 1 with H(2) and HSiEt(3) yield the monomeric compounds [Pt{Ga(ddp)}(2)(H)(2)] (7) and [Pt{Ga(ddp)}(2)(H)(SiEt(3))] (8). Finally, the reaction of [Pt(cod)(2)] with one equivalent of [Ga(ddp)] in the presence of H(2) in hexane gives the new dimeric cluster [Pt{mu(2)-Ga(ddp)}(H)(2)](2) (9).  相似文献   

18.
The reaction of the open bioctahedral form of Re(2)Cl(4)(&mgr;-dppm)(2)(CO)(CNXyl) (1), where XylNC = 2,6-dimethylphenyl isocyanide, with TlO(3)SCF(3) in the presence of acetonitrile proceeds with retention of stereochemistry at the dirhenium unit to afford the complex [Re(2)Cl(3)(&mgr;-dppm)(2)(CO)(CNXyl)(NCCH(3))]O(3)SCF(3) (3). The single-crystal X-ray structure determination of 3 shows that a Re&tbd1;Re bond is retained (the Re-Re distance is 2.378(3) ?) and that it is the chloride ligand trans to the XylNC ligand of 1 which is labilized. Complex 1 reacts with TlO(3)SCF(3) in a noncoordinating solvent to produce the unsymmetrical complex [Re(2)Cl(3)(&mgr;-dppm)(2)(CO)(CNXyl)]O(3)SCF(3) (2), through loss of this same chloride ligand of 1 and CO transfer from the adjacent Re center. The acetonitrile ligand of 3 is very labile and is readily displaced by XylNC and t-BuNC, with retention of stereochemistry, to produce complexes of stoichiometry [Re(2)Cl(3)(&mgr;-dppm)(2)(CO)(CNXyl)(CNR)]O(3)SCF(3) (R = Xyl, 4a; R = t-Bu, 4b). In a noncoordinating solvent, the nitrile ligand of 3 is lost and 2 is formed following CO transfer; this conversion is reversed upon the reaction of 2 with acetonitrile. When 3 is treated with CO, the acetonitrile ligand is again displaced, but in this instance the reaction is accompanied by a structure change to produce an edge-sharing bioctahedral complex of the type [Re(2)(&mgr;-CO)(&mgr;-Cl)(&mgr;-dppm)(2)Cl(2)(CO)(CNXyl)]O(3)SCF(3) (5).  相似文献   

19.
The reaction of phosphanido complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)(PPh(2))] [L = CO (1), CNXylyl (2)] with early transition metal halides in high oxidation states has been carried out. New bimetallic niobocene complexes [{Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)}(μ-PPh(2))(MCl(5))] [M = Nb, L = CO (3), L = CNXylyl (4); M = Ta, L = CO (5), L = CNXylyl (6)] have been successfully synthesized by the reaction with [MCl(5)](2) (M = Nb or Ta). In a similar way [{Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)}(μ-PPh(2))(MCl(4))] [M = Ti, L = CO (13), CNXylyl (14); M = Zr, L = CO (15), CNXylyl (16)] were synthesized using MCl(4) (M = Ti or Zr). Solutions of complexes 4-6 in chloroform produced new ionic derivatives [Nb(η(5)-C(5)H(4)SiMe(3))(2)(P(H)Ph(2))(L)] [MCl(6)] [M = Nb, L = CO (7), L = CNXylyl (8); M = Ta, L = CO (9), L = CNXylyl (10)]. Ionic complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(P(Cl)Ph(2))(L)] [NbCl(4)O(thf)] [L = CO (11), CNXylyl (12)] were formed from solutions in thf - rapidly in the case of 3 but more slowly for 4. New heterometallic complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)(μ-PPh(2)){(Ti(η(5)-C(5)R(5))Cl(3)}] [R = H, L = CO (17), CNXylyl (18); R = CH(3), L = CO (19), CNXylyl (20)] were synthesized by the reaction of 1 or 2 with [Ti(η(5)-C(5)R(5))Cl(3)] (R = H or CH(3)). All of these compounds were characterized by IR and multinuclear NMR spectroscopy, and the molecular structures of 9 and 12 were determined by single-crystal X-ray diffraction.  相似文献   

20.
The reaction of a 1,6-enyne with a hydrosilane catalyzed by Rh(acac)(CO)(2), Rh(4)(CO)(12), or Rh(2)Co(2)(CO)(12) under ambient CO atmosphere or N(2) gives 2-methyl-1-silylmethylidene-2-cyclopentane or its heteroatom congener in excellent yield through silylcarbocycization (SiCaC) process. The same reaction, but in the presence of a phosphite such as P(OEt)(3) and P(OPh)(3) under 20 atm of CO, affords the corresponding 2-formylmethyl-1-silylmethylidene-2-cyclopentane or its heteroatom congener with excellent selectivity through carbonylative silylcarbocycization (CO-SiCaC) process. The SiCaC reaction has also been applied to a 1,6-enyne bearing a cyclohexenyl group as the alkene moiety and a 1,7-enyne system. The functionalized five- and six-membered ring systems obtained by these novel cyclization reactions serve as useful and versatile intermediates for the syntheses of natural and unnatural heterocyclic and carbocyclic compounds. Possible mechanisms for the SiCaC and CO-SiCaC reactions as well as unique features of these processes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号