首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[isomers: see text] The kinetics and stereochemistry of the protonation-induced unimolecular isomerization of (R)-1-D1-3-(p-fluorophenyl)butane have been investigated in the gas phase at 40-100 degrees C and 70-760 Torr. This process leads to the formation of the relevant meta and ortho isomers with partial racemization of the migrating sec-butyl moiety. Complete racemization is observed, instead, when the isomerization reaction involves a 1,2-H shift in the moving alkyl group. These results, together with the relevant activation parameters, fully confirm the previous evidence of the occurrence in the alkyl cation/arene PES of noncovalent eta-type intermediates of defined structure and stability, lying well below the classical pi-complexes, as confirmed by ab initio calculations. Their crucial role in determining the positional selectivity of gas-phase electrophilic aromatic substitutions clearly emerges from the comparison of the present results with the site selectivity measured in the corresponding bimolecular arene alkylation carried out at the same temperatures and pressures.  相似文献   

2.
3-羟基-2-吡啶亚胺异构反应的机理   总被引:2,自引:0,他引:2  
在RHF-6-31G,MP2/6-31G和MP2/6-31G水平上,对3-羟基-2-吡啶亚胺的气相、水分子作为催化剂的异构化反应进行了研究,结果表明,气象异构难于进行,水分子作为催化剂参与反应过程是目标反应所循的反应路径。  相似文献   

3.
近十几年来,硅烯(:SN小'一到作为活性中间体的研究引起化学界的广泛兴趣,形成了内容丰富的硅烯化学.1975年Ilass*等研究了硅烯和乙炔的加成反应,指出该反应的中间体为硅杂环丙烯,硅杂环丙烯异构化为硅甲基乙炔.Boatz问等利用:j-ZIG(d)基组对金属杂环丙烯小[*xZC  相似文献   

4.
The gas-phase structures and energetics of both protonated arginine dimer and protonated bradykinin were investigated using a combination of molecular mechanics with conformational searching to identify candidate low-energy structures, and density functional theory for subsequent minimization and energy calculations. For protonated arginine dimer, a good correlation (R = 0.88) was obtained between the molecular mechanics and EDF1 6-31+G* energies, indicating that mechanics with MMFF is suitable for finding low-energy conformers. For this ion, the salt-bridge or ion-zwitterion form was found to be 5.7 and 7.2 kcal/mol more stable than the simple protonated or ion-molecule form at the EDF1 6-31++G** and B3LYP 6-311++G** levels. For bradykinin, the correlation between the molecular mechanics and DFT energies was poor (R = 0.28), indicating that many low-energy structures are likely passed over in the mechanics conformational searching. This result suggests that structures of this larger peptide ion obtained using mechanics calculations alone are not necessarily reliable. The lowest energy structure of the salt-bridge form of bradykinin is 10.6 kcal/mol lower in energy (EDF1) than the lowest energy simple protonated form at the 6-311G* level. Similarly, the average energy of all salt-bridge structures investigated is 13.6 kcal/mol lower than the average of all the protonated forms investigated. To the extent that a sufficient number of structures are investigated, these results provide some additional support for the salt-bridge form of bradykinin in the gas phase.  相似文献   

5.
The stability and isomerizations of CH3SO isomers have been investigated at B3LYP/6-311G(d,p), MP2/6-311G(d,p), QCISD/6-311G(d,p), and CCSD(T)/6-311G(d,p) levels. Geometries of isomers and transition states (TS) have been optimized at the B3LYP/6-311G(d, p) level. Vibration analysis and the intrinsic reaction coordinate (IRC) calculated at the same level have been applied to validate the connection of the stationary points. The four different methods give similar results: 11 isomers and 9 isomerization channels were found. CH3SO and CH2(S)OH are the most stable species among the 11 isomers. Furthermore, the breakage and formation of the chemical bonds in isomerization reactions have been discussed by the topological analysis method of electronic density. The "energy transition state (ETS)" and the "structure transition state (STS)" of all the isomerizations have been found. The topological analysis shows that the relative positions of ETS and STS are determined by reaction energy. The nonplanar four-member ring structure transition state (STS), which was first found in this paper, extended the concept of ring STS.  相似文献   

6.
采用量子化学中的DFT理论方法, 在B3LYP/6-311G*水平上全优化得到了不饱和类碳烯H2C=CLiCl的平衡结构。 结果表明, 不饱和类碳烯H2C=CLiCl只有2种平衡结构。 对这2种平衡结构之间相互转化的过渡态进行计算, 同时, 采用统计热力学及过渡态理论, 研究了2种平衡结构之间相互转化的热力学及动力学性质, 进而讨论了2种平衡结构在不同温度下的稳定性问题, 结果表明在所研究的100~600K温度范围内, 只有一种平衡结构能够存在。 在计算得到振动频率及吸收强度的基础上, 模拟了稳定平衡结构的红外光谱图。  相似文献   

7.
Ab initio caculations with RHF/6-31G and MP2/6-31G have been used to study the isomerization of 3-amino-2-pyridone in gas-phase and in water. The results obtained show that 3-amino-2-pyridone is isomerized into 3-amino-2-hydroxy pyridine via a four-center cyclic transition state in the gas-phase, and via a six-center cyclic transition state in water. The activation energies of this reaction are 226.3336(RHF/6-31G) and 171.2269(MP2/6-31G) in gas-phase, and 81.6398(RHF/6-31G) and 59.8668(MP2/6-31G) kJ mol−1 under the condition of a single water molecule as the catalyst, respectively.  相似文献   

8.
The reaction of NCN with O is relevant to the formation of prompt NO according to the new mechanism, CH+N2-->cyclic-C(H)NN- -->HNCN-->H+NCN. The reaction has been investigated by ab initio molecular orbital and transition state theory calculations. The mechanisms for formation of possible product channels involved in the singlet and triplet potential energy surfaces have been predicted at the highest level of the modified GAUSSIAN-2 (G2M) method, G2M (CC1). The barrierless association/dissociation processes on the singlet surface were also examined with the third-order Rayleigh-Schr?dinger perturbation (CASPT3) and the multireference configuration interaction methods including Davidson's correction for higher excitations (MRCI+Q) at the CASPT3(6,6)/6-311+G(3df)//UB3LYP/6-311G(d) and MRCI+Q(6,6)/6-311+G(3df)//UB3LYP/6-311G(d) levels. The rate constants for the low-energy channels producing CO+N2, CN+NO, and N(4S)+NCO have been calculated in the temperature range of 200-3000 K. The results show that the formation of CN+NO is dominant and its branching ratio is over 99% in the whole temperature range; no pressure dependence was noted at pressures below 100 atm. The total rate constant can be expressed by: kt=4.23x10(-11) T0.15 exp(17/T) cm3 molecule(-1) s(-1).  相似文献   

9.
The potential energy hypersurface of the ground triplet states of the BNO-BON-NBO system has been investigated using traditional ab initio electronic structure theory. The molecules studied have the molecular formula BON and include three linear and three angular species, and two transition states for the isomerization of an angular N-B-O to an angular B-O-N and a linear B-NO, respectively. All stationary points on the BNO-BON-NBO isomerization potential energy surface have been characterized employing UMP2, UMP4, and Gaussian-2 (G2) theory with the 6-311G(d), 6-311G(2d), and TZ2P basis sets. The isomerization for an angular N-BO to the linear B-NO has a lower energy barrier than that of the former to an angular B-ON. Energetics are presented with G2 energies. Two sets of resonance structures for both bent B-NO (boron nitrosyl) and B-ON (boron isonitrosyl) were proposed and the bonding in the two species was analyzed. For the purpose of comparison, the density functional theory based hybrid methods B3LYP/6-311G(d) and B3LYP/TZ2P have also been applied to both geometry optimization and single-point calculations. It is found that the B3LYP prediction of the nature of the linear B-O is contradictory to that made by all MPn(n = 2 and 4) calculations. The cause for this contradiction is discussed.  相似文献   

10.
BrSSCl和SSBrCl相对稳定性的理论研究   总被引:1,自引:0,他引:1  
采用量子化学中的密度泛函理论,在B3LYP/6-311 G(3df)水平上全优化得到了S2BrCl分子线型和分叉型2种异构体的平衡结构,同时对可能发生的分子内原子迁移过程的过渡态进行了考察。计算结果表明,从能量角度看,线型的BrSSCl为稳定构型。采用统计热力学及过渡态理论,研究了Z种平衡结构之间相互转化的热力学和动力学性质。根据计算结果,无论是Cl迁移还是Br迁移,分子内的原子迁移都需要较高的活化能,并且迁移速度较慢。  相似文献   

11.
The calculations of the geometry optimizations, energies, dipole moments, vibrational spectra, rotational constants, and isomerization of doublet SiC3H species were performed using density functional theory and ab initio methods. Four types of isomers, a total of 18 minima, connected by 16 interconversion transition states, were located on the potential energy surface (PES) at the B3LYP/6-311G (d, p) level. More accurate energies were obtained at the CCSD(T)/6-311G(2df, 2p), and G3(MP2) levels. With the highest isomerization barrier, the lowest lying structure, linear A1 possesses the largest kinetic stability. Besides, the isomerization barriers of A2, A4, C2, F1, F4 and F5 are over 10 kcal/mol, and these isomers are also considered to be higher kinetically stable. Other isomers cannot be kinetically stabilized with considerably low isomerization barriers. Investigation on the bonding properties and the computations of vibrational spectra, dipole moments, and rotational constants for SiC3H isomers are helpful for understanding their structures and also valuable for their detections in the interstellar space and laboratory.  相似文献   

12.
The complex potential energy surface and reaction mechanisms for the unimolecular isomerization and decomposition of methyl-nitramine (CH3NHNO2) were theoretically probed at the QCISD(T)/6-311+G*//B3LYP/6-311+G* level of theory. The results demonstrated that there are four low-lying energy channels: (i) the NN bond fission pathway; (ii) a sequence of isomerization reactions via CH3NN(OH)O; (IS2a); (iii) the HONO elimination pathway; (iv) the isomerization and the dissociation reactions via CH3NHONO (IS3). The rate constants of each initial step (rate-determining step) for these channels were calculated using the canonical transition state theory. The Arrhenius expressions of the channels over the temperature range 298-2000 K are k6(T)=1014:8e-46:0=RT , k7(T)=1013:7e-42:1=RT , k8(T)=1013:6e-51:8=RT and k9(T)=1015:6e-54:3=RT s-1, respectively. The calculated overall rate constants is 6.9£10-4 at 543 K, which is in good agreement with the experimental data. Based on the analysis of the rate constants, the dominant pathway is the isomerization reaction to form CH3NN(OH)O at low temperatures, while the NN bond fission and the isomerization reaction to produce CH3NHONO are expected to be competitive with the isomerization reaction to form CH3NN(OH)O at high temperatures.  相似文献   

13.
The double bond migration of butene catalyzed by 1-ethyl-3-methyl-imidazolium fluoride (EmimF) has been studied using quantum chemical method. The geometries of reactant, transition state and product for the isomerization have been optimized by density functional theory (DFT) at the B3PW91/6-31G(d,p), 6-311++G(d,p) and aug-cc-PVDZ levels. The computed results show that the 4-H atom on imidazole ring of EmimF has a good catalytic activity to the double bond migration of butene and the catalytic reaction of 1-butene to 2-butene is a synergetic and elementary process. The apparent activation energy of isomerization is about 197 kJ/mol.  相似文献   

14.
Electronic structure calculations were performed at the B3LYP/6-31G level to identify the stationary structures on the potential energy surfaces for the transmetalation of 2-trimethylstannylbuta-1,3-diene with SnCl(4). The reaction pathways were characterized by locating the transition states on the intrinsic reaction coordinate. The calculations showed that the reaction between the reactant and SnCl(4), which generates 1-trichlorostannylbuta-2,3-diene via transmetalation, has a low energy barrier of 78.1 kJ.mol(-)(1). The following isomerization process is the rate-controlling step. It turned out that the isomerization process from 1-trichlorostannylbuta-2,3-diene to 2-trichloro-stannylbuta-1,3-diene via transmetalation with SnCl(4) is more energetically favorable than other possible isomerization processes.  相似文献   

15.
The isomerization of 1-butene to trans-2-butene catalyzed by 5-H proton of 1-ethyl-3-methyl-imidazolium fluoride (EMImF) has been studied with density functional theory of quantum chemistry. The equilibrium states geometries and transition state geometry are optimized at the levels of B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p), respectively. The apparent activation barrier of isomerization is about 208 kJ/mol theoretically. It indicates that the 5-H proton on the imidazole ring of EMImF has certain catalytic activity to the butene double bond isomerization, which is similar to that of the 4-H proton. According to the data of intrinsic coordinate path, it can be determined that the isomerization is an elementary course and the hydrogen exchange of butene with EMImF is synergetic.  相似文献   

16.
The conversion of peroxynitrite (ONOO-) to nitrate (NO3-) mediated by peroxynitrous acid (ONOOH) has been investigated at the CCSD/6-311G(d)//B3LYP/6-31 1+G(d,p) level. Two kinds of pathways for the title reaction were found. The results show that the energy barrier of isomerization through pathway 1 is around 25 kcal/mol in the gas phase. This value is significantly lower than that of isomerization without any catalysts. Thus, it indicates that ONOOH definitely makes the conversion from ONOO- to NO3- feasible. Although pathway 2 does not decrease the energy barrier of this isomerization, peroxynitric acid (O2NOOH) was obtained; moreover, this is a new pathway for this formation. In view of the results that peroxynitrate anion can decompose into nitrite and dioxygen, we conclude that our results are consistent with the experimental observation that nitrate, nitrite, and dioxygen are the main final products of the decay of peroxynitrite around pH 7.  相似文献   

17.
The reaction between singlet nitrenium ions XNH(+) (X = F and Cl) and H(2)O has been investigated by high-level of theory ab initio calculations. The geometries of the involved intermediates, transition structures, and dissociation products have been optimized at the MP2(full)/6-31G(d) level of theory, and accurate total energies have been obtained using the Gaussian-3 (G3) procedure. The reaction commences by the exothermic formation of the F-NH-OH(2) (+) and Cl-NH-OH(2) (+) intermediates, which are in turn able to undergo two distinct low-energy reaction paths, namely, the isomerization to the N-protonated isomers of the hydroxylamines F-NH-OH or Cl-NH-OH, and the eventual extrusion of HF or HCl. The competitive or alternative occurrence of these two processes strictly depends on the nature of the substituent X. In the reaction between FNH(+) and H(2)O, the energy gained in the formation of the complex F-NH-OH(2) (+) from the association between FNH(+) and H(2)O, 52.1 kcal mol(-1), is by far larger than the activation barrier for the loss of HF from F-NH-OH(2) (+), computed as 24.9 kcal mol(-1). In addition, the F-NH-OH(2) (+) intermediate requires 33.0 kcal mol(-1) to overcome the barrier for the isomerization to F-NH(2)-OH(+). Therefore, the reaction between FNH(+) and H(2)O is expected to occur practically exclusively by HF elimination with formation of the HN-OH(+) ionic product. On the other hand, for the reaction between ClNH(+) and H(2)O, it is not possible to get a definitive conclusion on the competitive or alternative occurrence of the two reaction paths. In fact, the transition structure involved in the elimination of HCl from Cl-NH-OH(2) (+) is only 3.4 kcal mol(-1) lower in energy than the transition structure for the isomerization of Cl-NH-OH(2) (+) to Cl-NH(2)-OH(+). In addition, the absolute values of the energy barriers of these two processes, 24.2 and 27.6 kcal mol(-1), respectively, are comparable with the energy gained in the formation of the complex Cl-NH-OH(2) (+) from the association between ClNH(+) and H(2)O, 24.0 kcal mol(-).1 Therefore, the ClNH(+) cation is predicted to react with water significantly slower than FNH(+).  相似文献   

18.
Theoretical Study on the Structure and Isomerization of CH_3SB   总被引:1,自引:0,他引:1  
杜玉扣 《结构化学》2005,24(3):349-353
1 INTRODUCTION Solid boron and materials containing boron are po-tential excellent rocket fuel. Many studies arefocused in experiment and theory on the boroncompounds, among which simple boroncompound-HOB with simple structure can be readilyprepared. There are many reports on the experimentaland theoretical re- search results of the molecule aswell as unsaturated CH3NH=B and H2N=B exceptHOB. Very recently, some theoretical studies ofunsaturated CH3OB…  相似文献   

19.
The trans-bis(glycine)nickel(II) complex was synthesized, and the Fourier transform infrared spectra in the regions 4000-370 cm(-1) and 700-30 cm(-1) were measured. Band deconvolution analysis and the second derivative of the infrared spectrum were also performed. The determination of the geometrical structure in the trans position of the glycine ligands around Ni(II) for the trans-bis(glycine)nickel(II) complex as well as the vibrational assignment were assisted by RHF/6-311G and by Density Functional Theory calculations, DFT:B3LYP/6-31G and 6-311G basis sets. A full discussion of the framework vibrational modes was done using as criteria the geometry study of distorted structures generated for the vibrational modes. Incidentally, Normal Coordinate Analysis was carried out for the Ni(N)(2)(O)(2) structural fragment. The calculated DFT spectra in the high- and low-energy regions agree with the observed ones.  相似文献   

20.
Cis-trans isomerization of [9]-annulenanion(1) and its 2-fluoro-,2-chloro-and 2-bromo-derivatives(2,3 and 4,respectively) were investigated at the HF/6-31G* and B3LYP/6-311++G** levels of theory.Cis,cis,cis,cis structures appear more stable than their corresponding cis,cis,cis,trans-isomers.The relative height of energy barriers for cis-trans isomerization is:2cis > 1cis > 3cis > 4cis.This trend for the reverse trans-cis isomerization follows the electronegativity of the substituent at C-2(2trans > 3trans > 4trans > 1trans).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号